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Abstract. Engineering privacy-friendly systems requires first assessing
privacy threats and then selecting privacy-enhancing technologies (PETs)
to mitigate the threats. While well-established methods such as LINDDUN
support threat assessment, systematic approaches for PET selection
remain underdeveloped. This paper presents our experience applying three
such approaches to a realistic robotaxi use case. Although each method
has been validated by its respective authors on simple use cases, we
found that none could adequately support PET selection in our complex,
real-world scenario. As a result, we also explored a pragmatic approach
based on Hoepman’s privacy strategies. By analyzing the strengths and
limitations of these approaches, we identify key challenges that PET
selection methodologies should address and provide recommendations to
guide the future development of such methodologies.

Keywords: privacy-enhancing technologies - PET selection - privacy
threats - privacy threat mitigation - privacy engineering - robotaxi.

1 Introduction

For the early phases of the privacy engineering process —such as privacy threat as-
sessment — several methodologies provide specific guidance (e.g., LINDDUN [2§],
PANOPTIC [18], and xCOMPASS [9]). These methodologies support the high-
level design of privacy-friendly systems reasonably well, often through the use of
privacy strategies and privacy patterns [I3]. Academic efforts have also proposed
ways to support later phases, in particular the selection of Privacy-Enhancing
Technologies (PETS) to address the found privacy threats. Such work draws on
privacy principles [24], best practices, activities, objectives, patterns [I7, 25],
strategies [I3], and threat models [8], as well as the broader concept of privacy
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by design [I1]. However, the practical applicability of these proposals is not fully
understood. Applying them to the detailed design of privacy-friendly systems
in the real world may be challenging because of the approaches’ high level of
abstraction and other limitations and shortcomings.

This work investigates how the PET selection problem can be solved in
practice, using a realistic robotaxi system as use case. Robotaxi services involve
extensive and sensitive data processing throughout their lifecycle — from ride
requests and routing to post-ride analytics— making them an ideal testbed for
evaluating PET selection methodologies. Our aim is to investigate to what extent
existing methodologies can be used to select appropriate PETs to enhance the
privacy in the considered robotaxi service. In this work, we do not propose
the final design of a privacy-preserving robotaxi service, but rather focus on
investigating the methodologies for selecting PETs.

We make the following contributions: i) We identify three methodologies in the
literature that promise guidance on PET selection, and apply them to a realistic
robotaxi use case. We find that none yield satisfactory results. ii) We apply a
pragmatic, experience-based approach based on Hoepman’s privacy strategies [13]
to identify a useful set of PETS. iii) We analyze the strengths and limitations of
these approaches and extract insights to inform the development of improved PET
selection methodologies. Our findings show that existing methodologies provide
limited — or no—support for the detailed design and actual implementation of
privacy-friendly systems. In particular, there is a lack of systematic, actionable
support for selecting PETs as well as clear guidance how to implement and
configure the selected PETs, how to combine them effectively, and how to integrate
them into an overall system.

2 Related Work

We identified several privacy frameworks and projects. They cover the areas
of privacy engineering (STRAP [I5], which builds on prior work by Bellotti
and Sellen [6] and Hong et al. [I4]), system re-engineering (POSD [5]), privacy
by design (PRIPARE@ based on the work of Kung [19] and Hoepman [I3]),
and compliance (PARROT [4]). MITRE has released the Privacy Engineering
Framework and Life Cycle Adaptation GuideEl7 while ENISA has published the
PETs Control Matri)ﬂ and a report on data protection engineerin@ However,
none of these frameworks give specific support in the selection of PETs.

Several relevant standards also exist. ISO/IEC 27701 extends ISO/IEC 27001
by adding requirements for establishing and improving a Privacy Information
Management System (PIMS). ISO/IEC 27550 describes privacy engineering across
the system lifecycle, drawing from Hoepman’s privacy strategies [I3] and Privacy

8 https://pripareproject.eu/
9 https://www.mitre.org/sites/default/files/2021-11/
10 https://www.enisa.europa.eu/news/enisa-news/enisas-pets-control-matrix-
a-tool-to-evaluate-online-and-mobile-privacy-tools
** https://www.enisa.europa.eu/publications/
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Fig. 1: Overview of the methodology used in this paper

Control Examples that are similar to patterns (e.g., Hide: Encryption, Mixing,
Perturbation). Similar to NIST SP800-53, ISO/IEC 29151 defines objectives,
controls, and guidelines for implementing controls for protecting personally
identifiable information (PII). Yet, none of these standards provide specific
support for selecting PETs.

In the academic literature, Drozd and Diirmuth [10] suggested linking privacy
patterns to PETs, but only as a conceptual outlook. Pape et al. [24] proposed
selecting PETs based on GDPR principles, without referencing specific threats.
Adams [I] introduced a privacy tree to classify PETs, offering some guidance
for selection, but the list is incomplete and several leaves are linked to multiple
PETs. Jordan et al. [16] provide an extensive list of PETSs, but offer minimal
support for selecting. We only found three papers that provide specific guidance
in PET selection [3] 20, 21], which we discuss in greater detail in Section

As our use case is in the automotive domain, we also examined PET-related
literature in this area. Al-Momani et al. [2] explored the usefulness of privacy
patterns in improving privacy in future automotive systems. Chah et al. [7]
applied LINDDUN to analyze privacy threats. Pape et al. [26] proposed a system
model to identify suitable integration points for PETs in a vehicle. Lobner et
al. [22] evaluated de-identification techniques in automotive use cases. None of
these works proposed a methodology for selecting suitable PETs.

3 Methodology

Fig. [1] depicts the methodology used to perform the research reported in this
paper. Our methodology is structured around a refined robotazi use case derived
from Al-Momani et al. [2]. We enhanced this use case to reflect more realistic data
flows and service phases based on descriptions from real providers like Waymo
and Ube?} We carefully checked that these refinements did not alter the original
threat model or its underlying assumptions. As a result, we were able to reuse
the threat assessment conducted by Al-Momani et al.[2].

To identify suitable PETs for our use case, we applied three PET selection
approaches from the literature: i) Kunz et al. [20] who propose a reproducible
method for selecting data-dependent PETs that can be used independently or

12 cf https://waymo.com and https://www.uber.com, respectively
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Fig. 2: Basic system model of a robotaxi service, from [2].

alongside other methods; ii) Kunz and Binder [2I] who offer an application-
oriented classification of PETs based on privacy protection goals, functional
context, technology maturity, and impact on various non-functional requirements;
and iii) Al-Momani et al. [3] who employ decision trees to guide the selection of pri-
vacy solutions based on LINDDUN threats and Hoepman’s privacy strategies [13].
In addition to these approaches, we applied a pragmatic, experience-driven ap-
proach (cf. Sect. in which we revisited assumptions, analyzed the purpose of
data processing, and considered applicable PETs. We then analyzed the outcomes
to uncover key challenges, limitations, and differences across the approaches. All
steps and findings were collaboratively reviewed to ensure consistency.

4 Use Case: Robotaxi — Refined System Model

Robotaxi services, which are autonomous, driverless taxi systems, represent
a cutting-edge application of self-driving vehicle technology. By focusing on a
generic robotaxi service, our aim is to derive insights applicable across the broader
industry, rather than to a single provider. From a privacy perspective, a robotaxi
service differs significantly from a traditional taxi service. In a traditional taxi,
the driver handles not only the driving, but also rider interaction, payment,
and unexpected situations. In a robotaxi, these functions are performed by a
combination of artificial intelligence and a remote service provider. As a result,
more data may need to be collected to ensure safe and effective service operation.

Our system model builds on the robotaxi model proposed by Al-Momani et
al. [2], providing a refined system version that offers closer alignment with real-
world deployments. This refinement is based on examining existing services and
incorporates best practices from the industry. While it does not (intentionally)
address privacy enhancements, the refined model serves as a more practical
foundation for selecting applicable PETs to mitigate the identified privacy threats.

Additionally, we noticed during the application of the pragmatic approach
that all of the three investigated approaches require a clean use case description
with minimal assumptions. Therefore, we revisited the original assumptions,
asking if the data in question was truly necessary and if it could be reduced.
For instance, we challenged the assumption that a user’s birth date needs to be
collected during registration, as a more privacy-friendly option would be to use
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Table 1: Data collected or assigned and data used in the various phases.
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just a binary check (e.g., “user is of legal age”) which avoids the collection of the
full date of birth, which could be used for identification.

As shown in Fig. [2] the robotaxi system involves four primary parties: User,
who requests and manages rides through an application; Rider, the individual
taking the ride, who may or may not be the same as the User; Service Provider,
SP, who operates the robotaxi service, manages the backend system, assigns
vehicles, and ensures smooth operation; and Original Equipment Manufacturer,
OFEM , who builds and maintains the vehicle, including hardware and software
updates. In addition to these natural persons (User and Rider) and legal entities
(SP and OEM), Vehicle can be seen as a fifth party.

The use of a robotaxi service involves several phases, each requiring specific
data elements for effective operation. In the following, we describe each phase.
Table [I] summarizes the data collected or assigned during these phases, along
with the specific phases in which each data item is used or required.

1. Account Creation. Users create an account through an application. Data
Collected: Personal information such as name, email address, phone number,
and payment details (e.g., credit card information). Purpose: To authenticate
users, enable payment processing, and establish a user profile for service access.
Additional Features: Users may also indicate preferences such as accessibility
needs (e.g., wheelchair-accessible vehicles), select other service-specific options,
or participate in a loyalty program.

2. Booking a Ride. Users input their desired pickup and drop-off location(s)
into the app, and optionally specify a pick-up time, number of riders, and specific
preferences (e.g. vehicle features). Data Collected: Current location (via GNSS),
pickup location, drop-off location, and potentially pick-up time and preferred
routes. Purpose: To generate ride requests and facilitate assignment of a vehicle
to User in the next phase. Additional Features: Users receive confirmation
notifications, and the app provides options to adjust the booking if needed. If
the taxi is booked for a different Rider, the name is provided by User.



6 Al-Momani et al.

3. Vehicle Assignment & Ride Confirmation. The system assigns an
autonomous vehicle and provides ride details to User. Data Collected: Vehicle
identification (e.g., make, model, license plate), estimated time of arrival (ETA),
and Rider’s updated location for precise pickup (if selected). Purpose: To inform
User of vehicle details and ensure accurate pickup coordination. Additional
Features: User is notified when the vehicle arrives. Identity confirmation (e.g.,
PIN) is required to ensure the correct Rider enters the vehicle. Additionally, the
vehicle assignment requires fleet management data, including the precise location
of vehicles and the current fuel or battery levels.

4. Ride Execution. The autonomous vehicle navigates to the destination,
guided by its sensors and real-time data processing. Data Collected: Real-
time vehicle location, internal and external sensor data (e.g., audio, cameras,
LIDAR) and user interaction data within the vehicle (e.g., temperature or music
preferences). Sensor data, camera data, and vehicle location are also accessible
to the OEM at any time. Purpose: To enable safe travel, ensure Rider comfort,
and provide operational support. Additional Features: Rider may change the
route or drop-off location and can contact customer support via vehicle interface
or the app if issues arise.

5. Payment and Feedback. Payment is processed automatically upon
ride completion. Rider can provide feedback via the vehicle interface, and User
via the application. Data Collected: Ride fare details, payment method, trip
history, and user feedback (e.g., ratings, comments). Purpose: To complete the
financial transaction, maintain a record of rides, and improve service quality
based on feedback. Additional Features: User may receive trip summaries,
and promotional offers or discounts are applied based on User’s profile.

6. Post-Ride Actions. Additional interactions may occur between User
and SP, including invoice creation, ride history and analytics, customer support,
loyalty programs and rewards, safety and security issues, service customization,
data deletion, subscription cancellation, and social media sharing. Data Use:
Depending on the action, different existing data items may be reused or new
data may be collected.

5 PET Selection

Al-Momani et al. [2] conducted a privacy threat assessment of the original use
case. Because our refined use case closely aligns with the original, particularly in
terms of privacy threats, the assessment remains applicable, and we refer readers
to the original paper for more details. Our current focus is on selecting PETs to
mitigate these threats.

Our literature review identified three approaches that offer specific guidance
for PET selection. In Sections [5.1}j5.3] we describe our experience applying these
methods to the robotaxi use case. Given the limitations we encountered, we also
applied a pragmatic approach based on Hoepman’s privacy strategies [13]. The
challenges reported in Sections are not intended as criticisms of these
approaches. We recognize these approaches are valuable initial steps toward
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addressing a complex problem. Our goal is to highlight that the current state of
the art in PET selection remains inadequate for handling realistic use cases.

5.1 Approach of Kunz et al. (2020)

Kunz et al. [20] proposed a methodology for selecting PETs for IoT-based services,
with a focus on the automotive domain. The methodology consists of four steps:
service description, data-driven elicitation, service-driven elicitation, and PET
selection. We go through these four steps and try to apply them to our use case.

A. Service description. In this step, the service is specified, focusing on the
required data and the purposes of data processing. We have done this in Sect. [

B. Data-driven elicitation. In this step, all data identified in the first step
is analyzed according to 6 criteria: continuous or categorical data, set size, ordinal
or nominal data, data longevity, value sequences, metadata and identifiers. Each
of these analysis steps should help narrow down the set of PETs applicable to
the given type of data. In our case, this requires quite some effort. We identified
29 data types in our use case (see Table 7 leading to 29 - 6 = 174 analysis steps.
We present here only a couple of those steps as examples.

One criterion is whether the data is continuous or categorical, which poses a
challenge since most of our data types (e.g., name, address, vehicle ID, route)
are neither continuous nor categorical. Some data (e.g., fare) is continuous.
The analysis tells us that some PETs, for example PRAM (post-randomization
method), cannot be applied to these data types. Similarly, some of our data (e.g.,
payment method) is categorical, and the analysis tells us that some PETs, for
example noise masking, cannot be applied to these data types. Another criterion
is the number of values that the given data type can assume. For most of our data
types, this depends on implementation details (e.g., the string length maximally
allowed for name or address). This seems to contradict the statement of Kunz
et al. that their methodology can be applied in the early phases of the system
design process, because such choices may not have been made yet at this stage.
Also, Kunz et al. do not specify what to do with this information. They only
state that a smaller set of possible values decreases the applicability of PETs. It
is not clear how this could help narrow down the set of applicable PETs.

C. Service-driven elicitation. This step entails analyzing the service’s
requirements on data utility, with the aim of determining which PETs would not
undermine the usefulness of the given service. For this purpose, the methodology
uses three criteria: value precision, data freshness, and attribute dependency.

As to the first criterion, the “precision required by the service” is unclear
for certain data types (e.g., camera feed). For other data types, the precision
requirement may vary over time: e.g., the pick-up location must be known exactly
when the vehicle picks up the rider, but the precision may be lowered when
this data is stored for later processing. Unfortunately, the methodology does not
support such varying precision requirements. The second criterion is how fresh
the data needs to be. This is again problematic: the same data can be associated
with different freshness requirements for different purposes. For example, if the
robotaxi encounters a difficult traffic situation and requires remote control from a
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human operator, that operator needs the camera feed in real time. On the other
hand, for settling compensation claims, there may be a need to access archived
camera feeds from weeks before. Again, the methodology does not support this
type of varying requirements. The last criterion is the dependency between
attributes. Indeed, some of the data types in our use case are not independent.
For example, there is a connection between the route and the fare, since a longer
route typically leads to a higher fare. Kunz et al. draw our attention to the fact
that in such cases, determining different PETS for the dependent attributes may
cause problems. It is not clear how this information could help our PET selection
process, since the different data types may force us to use different PETs for those
attributes. Also, even if the same PET is used for two interdependent attributes,
the dependency may still cause problems if not properly taken into account, and
the methodology does not clarify how to avoid such problems.

D. PET selection. Assuming that the previous two steps delivered a set of
potentially applicable and useful PETs (which is not the case in our use case due
to the difficulties reported above), this step aims at choosing the best ones from
those sets. Unfortunately, Kunz et al. state that this is highly use-case-specific,
so that they do not provide a systematic approach for this step.

Further limitations. As we saw above, steps B and C are only partially
applicable to our use case, and step D does not give clear guidance. In addition,
the approach suffers from further limitations. First, the approach is limited to
data-obfuscation PETs. In our case, several data types (e.g., user name or payment
information) must be available to the service provider without modifications for
legitimate purposes, so that they cannot be obfuscated. There are data protection
requirements associated with these data types, but addressing these requirements
requires PETs not supported by the methodology. Second, the approach assumes
a list of available PETs. However, finding the right level of abstraction for PETs
is challenging. E.g., Kunz et al. consider aggregation to be one PET, but mention
that various aggregation techniques exist. Those techniques could be just as
well considered individual PETs. If we find out using the methodology that we
should use aggregation, we are still faced with the question of which aggregation
technique to use. Third, Kunz et al. state that their approach can be used in
tandem with LINDDUN. However, the approach excludes two important threats
covered by LINDDUN: unawareness and non-compliance. Compliance with data
protection regulations is the primary privacy objective for most service providers,
making non-compliance the most important threat from their point of view.

5.2 Approach of Kunz and Binder (2022)

Kunz and Binder [2I] propose a categorization of PETs to aid PET selection.
For each considered PET, they determine the relevant privacy goals, metrics for
measuring the PET’s privacy effect, the relevant “functional scenario” (one of:
release, messaging, authentication, authorization, retrieval, computation), the
PET’s maturity on a scale from 1 to 3, and the PET’s impact on performance,
architecture, and utility (the last three are binary attributes: there is either
impact or not). The paper provides this categorization for 29 PETs. On this
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basis, the following methodology can be deduced. Starting from a privacy threat
assessment, first the privacy goal and functional scenario is determined for each
threat. Then, the categorization helps identify the subset of PETs applicable to
the combination of privacy goal and functional scenario. Finally, the maturity
and impact attributes of the short-listed PETs help choose the most appropriate
PET. In the following, we go through these steps, applying them to our use case.

A. Identifying privacy goal and functional scenario. A privacy threat
assessment of our use case has already been performed by Al-Momani et al. [2]
using LINDDUN. The privacy goals used by Kunz and Binder are directly linked
to the LINDDUN threat types, which makes it trivial to determine the privacy
goal related to each threat. E.g., for a linkability threat, the related privacy goal
is unlinkability. Determining the “functional scenario” that provides the context
for a threat, however, is not always obvious. Some threats arise in the context of
activities that could belong to more than one category: e.g., the threats arising
from data sharing between the SP and the OEM could be seen to belong to both
the “release” and the “messaging” category. The functional scenario of some other
threats—e.g., the threat of storing personal data beyond its necessary retention
period—does not seem to belong to any of the proposed categories.

B. Identifying relevant subset of PETs. If the privacy goal and the
functional scenario could be determined for a threat, then the matrix of Kunz
and Binder can be used to mechanically determine the subset of relevant PETs.
Even this seemingly straightforward step poses difficulties. The matrix offers no
PETs for unawareness and non-compliance threats, although, as we mentioned
earlier, these threats can be very important. Also, there are many combinations
of privacy goal and functional scenario, for which the matrix offers no PETs.

C. Selecting the most appropriate PET. If we managed to identify a set
of applicable PETs for a given threat through the two previous steps, then the
final step is to select the most appropriate one. Unfortunately, the paper offers
no clear guidance on how to do that. It is suggested that the maturity and the
impact on performance, architecture, and utility should be helpful in making
this decision. But it is not clear how. E.g., suppression and recoding are given
as two PETs that can both address linkability threats in a “release” functional
scenario, and they have the same maturity and the same impact on performance,
architecture, and utility, so it remains unclear which one to choose. Another
example: swapping and noise masking can be used for the same type of threat
and functional scenario; swapping has a lower maturity than noise masking, but
noise masking impacts utility, making it unclear which one to choose.

Further limitations. Beyond the questions that the individual steps raise, the
approach also suffers from more general issues. Some are similar to the problems
identified in Sect. E.g., unawareness and non-compliance are missing in both
approaches. Also, we mentioned in Sect. [5.1] that it is difficult to come up with a
good list of PETSs because it is not clear if different variants of a PET should be
regarded as different PETs. For the method of Kunz and Binder, this problem is
even more severe because different variants of a PET may have different maturity
and different impact on performance, architecture, and utility. E.g., Kunz and
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Binder mention synthetic data as a PET. However, there are many ways to
generate synthetic data, and their impact on, e.g., utility can be very different.

The impact attributes of Kunz and Binder are problematic anyway. It is not
possible to capture the impact of a PET on performance, architecture, and utility
in general, because this depends on many further details. E.g., the matrix of
Kunz and Binder shows that the PET MPC (multi-party computation) impacts
performance. However, there are many MPC techniques, and their performance
impact is very different. Even for one particular MPC technique, e.g., additive
secret-sharing, its performance impact depends heavily on the types of operations
that it is applied to: linear operations (addition or multiplication by a constant)
can be very quickly performed on additively secret-shared numbers, whereas
non-linear operations are much more costly [27]. Thus, the performance impact
depends not only on the PET, but also on the context in which it is applied. A
further problem is that the analysis must be performed for every single threat. In
a real system, the number of threats can be high, making this impractical. Also,
the risk posed by several threats may simply be accepted or may be addressed
by non-technical means, so that PET selection for these threats is not necessary.
E.g., in our use case, there are obvious identifiability threats stemming from the
collected identifiers, but this is accepted because of other requirements. Finally,
threats may be connected to each other. The methodology proposes a PET for
each threat independently, potentially leading to a sub-optimal solution.

5.3 Approach of Al-Momani et al. (2022)

Al-Momani et al. [3] propose a methodology using decision trees to systematically
guide users from privacy threats identified with LINDDUN to suitable privacy
solutions. For this, specific key nodes are identified in the LINDDUN threat trees.
These nodes contain information regarding the cause of the threat, the threat
class, and the system element where the threat applies. For each key node, the
mitigation goal is defined, and nodes sharing the same goal are grouped together.
In total, ten mitigation goals are defined. For each mitigation goal, potential
countermeasures are defined and then ordered according to the data-oriented
privacy design strategies [13], i.e., Minimize, Separate, Abstract, and Hide. This
process yielded four solution trees for the mitigation goals “protect-attributes”,
“protect-communication-metadata’”, “protect-id”, and “secure-processing”. In the
following, we apply this approach to our use case.

A. Identify “key nodes” for the solution trees. To select the applicable
PETs, the original approach had to be modified because it had been designed
for an earlier version of LINDDUN, rendering the utilization of the key nodes
unfeasible. Our adaption process was initiated by mapping the identified threats
from the LINDDUN analysis to the solution trees. To maintain a fundamental
element of the method—the usage of the rationales underlying a threat identified
through the threat trees—we used the assumptions from the use case [2], which
encompass analogous information and facilitated the mapping process.

B. Identify possible PETs using the solution trees. The aforementioned
new mapping allowed us to use the solution trees, which consequently resulted in
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some PETs for the different phases. The first step is to address the applicability of
a PET. Then, it is necessary to determine whether the PET alone is adequate to
remedy the threat of the key node or if it must be combined with other applicable
PETs. In summary, we observed two main outcomes of the method per threat: i)
Mitigation is not applicable since the (precise) data is required for the service,
e.g. for user identification; and ii) Mitigation is possible using: Remove, Replace,
Separate, or use Noisy & less granular attributes, depending on the data.

The proposed solution trees are a promising concept, particularly in terms of
prioritizing privacy strategies and assessing the necessity of data. This approach
involves determining whether the data is indispensable and, if so, explores options
for its replacement, separation, or generalization. Only after this thorough evalua-
tion should the utilization of advanced PETs be considered. However, this method
also has major shortcomings. The “secure-processing” tree might be complete
regarding PETs, since it helps choose one of the three currently available PETS for
secure processing: homomorphic encryption, trusted execution environments, and
multiparty computation. However, the “protect-id” tree considers only attribute-
based credentials as a PET which limits usability. The “protect-attributes” tree
only considers encryption in general and no specific PET. Although the key ‘entry’
nodes include “Untrusted communication”, “Observe message and/or channel”,
and “Dataflow not fully protected”, even TLS is missing as a PET. In addition,
technologies that protect attributes are missing, such as attribute-based cre-
dentials or zero-knowledge proofs. The “protect-communication-metadata” deals
with “Non-anonymous Communication” and lists only Onion routing and Hiding
timestamps and the message size by random padding as possible PETs.

Further Limitations. The approach suggests primarily to use Hoepman’s
privacy strategies [I3], but lacks more concrete details on PET selection. Missing
PETs limit the selection of (advanced) technical PETs.

5.4 A Pragmatic Approach Based on Hoepman (2014)

We now sketch a pragmatic approach based on Hoepman’s privacy design strate-
gies [I3] and the authors’ collective expertise. Al-Momani et al. [2] previously
identified the assumptions underlying the privacy threats they found. To address
these threats, we revisit their assumptions. We identify the purpose of data
processing and explore the potential application of PETs to enhance privacy.
Where feasible, appropriate PETs are incorporated.

A. Preparation by applying privacy strategies. Before analyzing the
assumptions and phases relevant to PET selection, we adopted the following
general strategies (where applicable): 1) Minimize: We revisited the original
assumptions, asking whether the data in question was truly necessary (cf. Sect. .
For age verification, the application of Attribute-Based Credentials (ABCs) could
be considered. ii) Hide: Encrypt all collected data at rest (e.g., disk/database
encryption) and in transit (e. g., TLS); ii) Enforce: Implement strict access control
(e.g., role-based) to safeguard data and ensure auditability; iv) Inform: Provide
users with clear and accessible information about data processing and its purposes,
such as through a privacy policy, data collection notices, and regular updates; v)
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Control: Enable users to manage their preferences, and access, delete, or update
their personal information — via a user dashboard, data deletion protocols, opt-in
mechanisms, and consent withdrawal.

B. PET selection process. To identify additional potential PETs, we
examined the data items used in each phase. Table [I] provides an overview of
how data is used across phases. For example, one result of this activity was
the identification of homomorphic encryption as a potential PET for encrypting
location, time, and route data of vehicles, thereby enabling vehicle allocation while
preserving confidentiality and still allowing matching with the (also encrypted)
user location.

C. Threat assessment. We conducted an additional LINDDUN analysis
using the revised assumptions. The revised assumptions have the potential
to mitigate or eliminate most of the previously identified threats. However,
we were unable to eliminate threats regarding linkability and identifiability
(LINDDUN threats L.1.1, I.1.1, and 1.2.2.1), as these stem from the use of a
unique identifier. Nevertheless, for the purposes of our use case, it does not
constitute a privacy problem if the SP can identify a User. It is important to note
that even if advanced PETs (e.g., attribute-based credentials, zero knowledge
proofs, anonymous payment) are implemented to allow anonymous use of the
service, the SP may still be able to identify a user through data correlation (e.g.,
pick-up/drop-off locations, routes, and times), behavioral patterns, or service
customization. Furthermore, in certain jurisdictions, the SP may be obligated to
collect specific information for legal compliance, making full anonymity impossible.

Further Limitations. The main limitation of this approach is that it is
not a systematic methodology. We first identified suitable privacy strategies
following Hoepman [13], and then mapped them to relevant PETs. However,
Hoepman’s strategies are defined at a higher level than PET Selection. As a
result, we analyzed assumptions and determined the deployability of specific
PETs to address certain threats based on our own experience, without a formal
method. This introduces two limitations: i) The approach requires experienced
experts to produce useful results, and ii) Different teams may reach different
conclusions, reducing consistency and repeatability.

6 Analysis of PET Selection Approaches

In this section, we analyze the findings from the three PET selection attempts of
Sections highlighting their respective strengths and weaknesses. Table
provides a comparative summary of our analysis. We also extract insights to
guide future research on PET selection methodologies.

6.1 Strengths

Each of the methodologies considered (Sect. 5.3]) has its own strengths, which
are largely complementary.



Challenges in Selecting Privacy-Enhancing Technologies 13

Table 2: Comparison of PET Selection Approaches

Criterion

Kunz et al. (2020)

Kunz & Binder (2022)

Al-Momani et al. (2022)

Core Method

Data- and service-driven
filtering of PETs

PET matrix by goal,
scenario, maturity, impact

Decision trees linking
LINDDUN threats to
strategies

Design Stage
Fit

Assumes mature design,
known data

Requires detailed threats

Needs mapped assumptions
and threats

Final PET
Selection
Support

No decision logic for
choosing among PETs

Maturity /impact noted but
no guidance

No prioritization among
PETs

Scalability /

Too granular for large

Partial threat coverage

Partial PET coverage;

Use Case Fit  systems requires expert tuning
Handles Recognizes variation but  Treats PET effects as Accounts for necessity of
Context lacks structured support static across contexts data

Threat Interde- Treats threats

pendency

independently

Treats threats
independently

Considers shared
assumptions, but not
systematically

PET Coverage Narrow focus on

obfuscation PETs

Moderate PET list with
missing types

Incomplete list (e.g., omits
TLS, ZKPs, ABCs)

Strengths

Combines data/service
analysis; domain-specific
taxonomy

Maturity and impact
dimensions included

Leverages threat rationale;
supports strategy
prioritization

Limitations

High effort; limited
guidance for final PET

Ambiguous threat-to-PET
mapping; lacks detail on

Limited PET set; lacks
automation or consistency

selection PET variants

The approach of Kunz et al. [20] promotes a combination of data-driven and
service-driven elicitation. This is a sensible idea, as both the characteristics of
the data and the requirements of the service influence the set of applicable PETs.
The paper also introduces the concept of a domain-specific data taxonomy, with a
set of applicable PETs mapped to each identified data type. This is an interesting
idea that could help make PET selection more efficient.

The approach of Kunz and Binder [21] considers PET maturity as well as the
impact of PETs on performance, architecture, and utility. Each of these aspects
may be important in practice.

The approach of Al-Momani et al. [3] leverages detailed threat assessment
information when selecting PETs. Our experience confirmed the value of this idea:
the threat assessment improved our understanding of the origins and potential
consequences of privacy threats, which proved helpful for PET selection.

6.2 Weaknesses

As described in Sect. [f] applying each of these academic approaches to our use
case was problematic. Beyond the specific weaknesses of individual approaches,
which may reflect their relative immaturity, we encountered several recurring
limitations that may indicate more fundamental limitations. First, each approach
seems to assume a completed system design. However, by that point, introducing
PETs may be too late, as they could potentially impact core design choices. None
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of the approaches supports an agile process in which the general system design
and privacy considerations evolve in parallel, influencing each other iteratively.

Second, each approach assumes a fixed list of PETs and clear criteria for
applicability. In practice, PET lists are often arbitrary, and the applicability of
a given PET typically depends on context. Determining the impact of a PET
(e.g., on performance, architecture, functionality, or future extensibility) requires
careful analysis and substantial design effort [23]. The reviewed approaches tend
to overlook this and rely on over-simplified generalizations.

Third, while existing approaches may identify potentially applicable PETs,
they offer little guidance for making a final selection. This gap is especially critical
in scenarios with specific accuracy and performance requirements. For example,
when adding noise, it should sufficiently obscure privacy-relevant information
without degrading the utility of the data. The performance impact of a PET also
depends on the context: real-time applications impose stricter constraints than
offline or batch-processing tasks. Moreover, the outcome depends not only on the
PET itself but also on its configuration (e.g., the € value in differential privacy).

Fourth, each approach treats threats in isolation, selecting at least one PET
per threat. In reality, both threats and PETs may be interdependent. For example,
a single PET might mitigate multiple threats, or the use of one PET could interfere
with the effectiveness of another. Focusing solely on local decisions can lead to
overall suboptimal or even infeasible outcomes.

Finally, each approach omits considerations that fall outside their defined
scope, such as “soft privacy” goals or security requirements. While this is under-
standable in a research setting, practical methodologies must be more compre-
hensive to be useful in real-world deployments.

6.3 Recommendations for Future Methodology

Insights from the pragmatic approach could help inform the development of
improved methodologies. We offer the following recommendations.

Investigate Assumptions. When identifying mitigation techniques, we
found it important to trace threats back to their underlying causes. The origin
of a threat often constrains the available mitigation options. For example, if
Identifiability threats arise due to legal requirements to identify users, then PETs
that provide anonymity may not be applicable. To support this process, we found
it useful to document data protection-related assumptions about the system and
to link each identified threat to the assumptions that give rise to it. This also
helped identify cases where multiple threats stemmed from a shared assumption,
meaning that a single PET targeting that assumption could address several
threats. Revisiting assumptions and clarifying the purpose of data processing
proved to be a valuable step in preparing for PET selection.

Specific Step-wise Dataflows. Structuring the use case into discrete steps
helped streamline PET selection. It allowed us to visualize when and where data
is created, to identify dependencies, and to avoid unintended side effects when
applying PETs. A PET applied to mitigate a threat in one step may influence
other steps where the same data is used.
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PETs’ Appropriateness. Addressing the limitations of current approaches
will require improved support for selecting PETs in specific scenarios. In partic-
ular, new methodologies should help map scenario-specific requirements to the
expected changes in system properties (e.g., performance, accuracy) resulting
from the implementation and configuration of PETs. This would inevitably bring
deployment and integration changes to the system that should be investigated
by new methodologies.

Adaption to Design Phase. Different phases of the system design process
require distinct tools and approaches. Designing a system from scratch allows
building privacy into the architecture from the ground up. In contrast, improv-
ing an existing system demands a detailed understanding of current data flows
to assess whether introducing a PET is feasible. For example, adding noise to
encrypted data is not straightforward and may compromise functionality. Intro-
ducing a PET might also disrupt operations if essential data becomes inaccessible.
If the system incorporates machine learning, additional considerations arise, such
as the distinction between the initial training phase and the deployment of the
model, which may affect how and when PETs can be applied.

Addressing Compliance. None of the approaches considered compliance. A
future approach for PET selection could aim to bridge the gap between building
privacy-friendly systems and ensuring regulatory compliance. Aligning privacy
engineering with compliance requirements would significantly improve practical
adoption. This is especially relevant in corporate environments, where privacy
processes are often structured around meeting legal and regulatory standards.

7 Conclusions and Future Work

The PET selection methods found in the literature exhibit significant shortcom-
ings. While they offer some guidance, they often rely on oversimplified assumptions
(e.g., regarding the applicably of a PET in a given situation), and fall short of
providing a complete methodology. In some cases, these approaches yield a list of
potentially applicable PETs, but the challenge of selecting the most appropriate
one remains. This requires evaluating the maturity of each PET, its compatibility
with performance and architectural constraints, the availability of ready-to-use
implementations etc.

The pragmatic approach presented in this paper cannot be considered a
methodology in its current form, as it heavily relies on the expertise of the
team. The challenge of selecting appropriate PETs remains open, and current
approaches can only partially support this task.

Our work highlights the importance of using realistic use cases for evaluating
PET selection methodologies. Post-ride actions, such as service enhancements or
monetization, can directly influence PET selection. For example, issuing invoices
must comply with legal requirements regarding the included data.

While our analysis highlights the challenges of selecting PETs in real-world
scenarios, it does not offer a complete solution. Even after PETs are selected,
implementing, integrating, and configuring them remains a significant challenge



[12]. There is a need for more iterative, agile, and exploratory approaches that
support “what-if” analysis, allowing design teams to evaluate the impact of
selected PETs without immediate commitment. Privacy should be integrated
into overall system design, not treated as a separate, downstream process. The
use of Artificial Intelligence techniques to support PET selection also represents
a potential direction for future work.
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