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ABSTRACT
Cars are getting rapidly connected with their environment allow-
ing all kind of mobility services based on the data from various
sensors in the car. Data privacy is in many cases only ensured by
legislation, i. e., the European General Data Protection Regulation
(GDPR), but not technically enforced. Therefore, we present a sys-
tem model for enforcing purpose limitation based on data tagging
and attribute-based encryption. By encrypting sensitive data in a
way only services for a certain purpose can decrypt the data, we
ensure access control based on the purpose of a service. In this
paper, we present and discuss our system model with the aim to
improve technical enforcement of GDPR principles.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of security
and privacy; Privacy protections; Usability in security and
privacy; • Computer systems organization→ Special purpose
systems.
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1 INTRODUCTION
With the increasing connectivity of (autonomous) vehicles, the au-
tomotive industry is facing major changes. The current trend [21] of
connecting vehicles with local infrastructures and cloud backends
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opens great potential for data-driven applications, improved user
experiences, and new business models. Like mobile phones, cars
may hold massive information about their drivers such as where
they are driving, what speed they are driving at, and even whether
they are tired. As a result, the vehicle changes from being a pri-
vate space to being a part of the internet. Drivers’ mobile lives are
recorded and made available to various (3rd) parties. However, one
major challenge is still to respect the users’ privacy when providing
data-driven applications. The problem is being addressed through
several legislative initiatives from a legal perspective such as the
European General Data Protection Regulation (GDPR) [29] or the
upcoming ePrivacy Regulation [10]. In many cases key aspects such
as transparency or purpose limitation are not technically enforced.
If at all, many of them are only implemented within the processes of
the data handler. However, this approach has several drawbacks. On
the one hand, the realization is not enforced but rather implemented
manually which may cause problems in terms of transparency, and
consistency of the implemented guidelines. On the other hand,
with an increasing number of 3rd parties and a rapidly changing
environment around the Internet of Things (IoT) this approach is
also error-prone and labour-intensive. This paper presents a data
protection-oriented system model for connected mobility with the
aim of technically enforcing privacy regulations. Since the GDPR is
quite extensive, this paper cannot cover all aspects. While there are
privacy principles in the GDPR, e. g., integrity and confidentiality
of certain data that are technically feasible with state-of-the-art
technologies, other principles are not as straightforward to realize,
e. g., storage limitation. This paper has a specific focus on the tech-
nical implementation of "Purpose limitation" (Article 5(1)(b) GDPR)
as well as "Data protection by design and by default" (Article 25
GDPR) with state-of-the-art privacy-preserving technologies. The
contribution of this paper is a system model for connected mobility
where the technical enforcement of purpose limitation is incorpo-
rated into the system design in an early design phase. To the best of
our knowledge, there is no academic or industrial solution for the
technical assurance of data-protection goals in vehicles, yet. Related
applications of data tainting in the internet of things are focused on
data flow analysis and enforcement, but not on purpose limitation
(cf. Sect. 2 ). The remainder of this paper is structured as follows:
Section 2 presents background and related work. Sections 3 and 4
describe the methodology and the underlying use case. The main
Section 5 presents the proposed system model which is discussed
and evaluated in Section 6. Section 7 concludes the paper.
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2 BACKGROUND AND RELATEDWORK
This section briefly introduces the two relevant concepts of data
tagging and attribute-based encryption. In the following subsection,
related work is discussed.

2.1 Data Tagging
Data tagging is a prominent concept with a multitude of use cases
ranging from data classification to data leak prevention [43]. A
few of the most important goals mentioned by Zamfir [43] are, for
instance, to track and assure that sensitive data is not exposed to
outsiders, or to meet compliance requirements for reporting who
is accessing data internally and externally. The basic idea of tag-
ging is to connect data with metadata. Metadata per definition is
“data about data” - information that describes data and thus allows
to interact with them to obtain the required knowledge [30]. In
other words, data tagging refers to any process which amends data
payloads with classification metadata in a structured manner. This
way the context of a specific data type is available at any place
and decisions on sensitive data handling are made based on tagged
data without requiring knowledge about actual data representa-
tions. However, the method alone does not specify the technical
implementation. Taint markings can be wrapped in a standardized
container [36], stored adjacent to variables in memory [13], or be
embedded in a file’s metadata [44]. One approach for employing
data tagging in privacy-centric applications is to amend privacy
properties of the data, like a tag for personally identifiable informa-
tion (PII). Once sensitive data is distinguished from non-sensitive
data, the application can perform additional data protection mea-
sures for those particular sets of records. Supplementary procedures
are, for instance, data flow tracking, anonymization, or encryption.
If machine-readable policies are attached to data, in the literature
the approach is referred to as sticky policies [20]. The word ’sticky’
implies that the policies travel together with the data.

2.2 Attribute-Based Encryption
Attribute-based encryption (ABE) is a new type of identity-based
encryption (IBE) scheme [32]. The concept of identity-based cryp-
tosystems was first proposed by Shamir [35] with the idea of en-
abling public key encryption without requiring public key certifi-
cates. Instead, the user’s identity is used to derive an identity-based
key. In other words, if Bob wants to send a message to Alice using
public key cryptography, Bob does not need to contact a trusted
Key Distribution Center (KDC) to receive Alice’s public key. In-
stead, he can use Alice’s identity-based key to encrypt his message.
The protocol does not require a Public Key Infrastructure (PKI) to
establish a secure communication. In IBE systems identities are
viewed as a string of characters. Sahai and Waters [32] introduce a
new type of IBE scheme, namely attribute-based encryption, that
views an identity as a set of descriptive attributes. In their scheme
an entity encrypts a dataset for all users that comply with a certain
set of attributes. The rules for allowing decryption of the dataset
are attached to the data in form of an access policy. Access policies
are boolean formulas defined on some attributes which describe
the interested consumer or the encrypted data itself [37]. The en-
crypting party uses a public and individual encryption key whereas
decrypting parties have their own private and individual decryption

keys [17]. As an example, if Alice wishes to decrypt a message for
multiple recipients, it is not necessary for her to encrypt the mes-
sage for each individual receiver. Instead, she encrypts the message
once using her public and individual encryption key and defines
some attributes as access policy. As long as Bob’s private decryption
key conforms to the attributes listed in the access policy, he will
be able to decrypt the message. Otherwise, the decryption process
will fail. One major advantage of ABE is that it mathematically
enforces an access control mechanism through the policy and at-
tributes so that only decryption keys with adequate access rights
can eventually decrypt. With conventional symmetric and asym-
metric encryption schemes, data producers must encrypt datasets
individually for each receiver, i.e., using public keys in asymmetric
cryptography or shared secret keys in symmetric cryptosystems.
As a result of ABE, a dataset is encrypted only once, yet be shared
with multiple recipients while maintaining its confidentiality. ABE
is a promising cryptographic technique that integrates data encryp-
tion with access control. However, the efficiency problem of ABE
is considered a bottleneck limiting its development and applica-
tion [12]. Feasibility studies [3, 4, 15] have shown the adaptation of
ABE in IoT systems, but the computational overhead, in particular
with underlying pairing-based cryptography [6], is excessive in
practical applications, especially for devices with limited computa-
tional resources and power supply, like embedded systems in the
automotive domain. Meanwhile, lightweight alternatives are inves-
tigated [12, 22, 42], promising higher efficiency. In general, ABE
reduces the cost of multiple-receiver end-to-end encryption [17], as
datasets only need to be encrypted once and can still be decrypted
by multiple receivers. There is a wide range of literature discussing
the feasibility of lightweight attribute-based encryption schemes on
limited-resource devices, like smartphones [4], IoT devices [3, 15],
or even smart home scenarios [37]. One paper also focuses on au-
tomotive platforms [17], where La Manna et al. test the impact of
ABE schemes on a real hardware automotive platform. However,
their measurements only reflect the decryption time of ABE in a
vehicle as the vehicle receives an ABE encrypted software update
packet from the server and thus, only performs the decryption
operation. The proposed system model in this work requires the
vehicle system to perform encryption operations. With ABE, the
encryption method is computationally expensive, which might be
a problem with resource-constrained devices [7]. For the technical
details of ABE, we refer to [6].

2.3 Related Work
Research on enforcing GDPR principles technically is scarce in the
automotive sector. Most research is focused on a legally compliant
implementation where stakeholders are rather legally than tech-
nically restricted. Similar to our work, the few works considering
technical enforcement, are restricted to individual principles of
the GDPR, such as data erasure [33]. In the area of automotives,
Krauß [16] describes an architectural concept for self-data protec-
tion in a connected vehicle. The paper presents an abstract data
protection architecture, which aims to combine the aspects of risk
assessment, user transparency and self-determined control. The
architectural considerations can be used as a starting point for
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creating a transparent and privacy-friendly user experience in ve-
hicles. However, there is no direct mapping to GDPR requirements.
In contrast, our paper aims at the technical realization of GDPR
requirements. In addition to the system model, our work reflects
on implementation considerations by selecting suitable privacy-
preserving technologies (PPT) that are required for a technical
realization in the vehicle, which can be challenging itself [19, 28].
The concept of the Privacy Manager (cf. Sect. 5.3) in this work is
inspired by the privacy policy framework from Al-Shomrani et al.
[2]. The data protection system model in this work is based on
formal privacy policies, which allow to convey and enforce user
preferences throughout the system and beyond system boundaries.
Furthermore, the policy decision point is separated from the ac-
tual technical realization of privacy enforcement. PRICON [41] is
a user-centred privacy-aware control system which allows users
to define self-determined privacy policies which are applied to the
vehicular system. It could be connected with our system model to
define the privacy policies. A study on privacy concerns and data
sharing from connected cars [9] highlights the importance of con-
trol. They added drivers’ feelings of possession toward their driving
data to the privacy calculus and explain with it why individuals
are reluctant sharing even low-sensitivity data that do not raise
privacy concerns.

In the area of the internet of things, data tainting is used to allow
users to control data flow patterns [14] and for information flow
tracking and analysis [8], but not for purpose limitation, i. e., the
aim is to deny certain parties access to data or detecting data leaks
by analysing its flow. However, purpose limitation rather focuses
on the reason the data is used for than allowing or denying access
by a certain party. Rahulamathavan et al. [27] make use of ABE
for data aggregation, a wideley used privacy pattern in the IoT
architecture [23].

3 METHODOLOGY
In this section, we will briefly describe how the system model was
developed and evaluated. We will first discuss the use case and the
requirement elicitation and then describe the iterative process to
develop the system model.

3.1 Use Case and Requirement Elicitation
Before the system model and the respective use case can be dis-
cussed, it is important to define the scope of the model which
strongly depends on the considered use case. The use case was
defined in collaboration with a consortium of a research project,
which consists of organisations from academia and industry. The
development of the data protection-oriented system model is fo-
cused on and limited to connected vehicle systems. Apart from
the vehicle, entities interacting with vehicles, like backend agents
or 3rd parties, must also comply with data protection. However,
the privacy implications on external parties are not in the focus of
our work, and thus not addressed. Furthermore, a legal evaluation
which datasets in vehicles are regarded as sensitive is out of scope
and presumed to be done beforehand. A security evaluation of the
proposed system model is also not performed and outside of the
scope of this work. The research objective focuses on technical

measures for assuring the selected GDPR requirements in vehicle
systems. The use case is further described in Sect. 4.

3.1.1 Assumptions. To further specify the focus of our model, we
explicitly describe the following assumptions which may also need
some effort to be implemented, but which are outside of the scope
of this paper:

• The application is running in a secure environment with
state-of-the-art security measures, i. e., integrity measures
to ensure the datasets are not illegitimately modified and the
secrecy of the data is ensured against external attackers.

• The data classification process to determine whether the
data contains sensitive information was performed before-
hand. Data classification relies on a preliminary privacy risk
analysis and system modelling with legal support to define
specific and business-related data classification rules, which
is out of scope for this work. In this sense, we assume that
it is known at this stage which data types are considered
sensitive and which are not.

• The mobility services are following the privacy by default
principles, i. e., a service only requests data that are necessary
to provide the service functionality.

3.1.2 Requirements. The system model shall incorporate privacy-
preserving technologies in connected vehicles to accomplish pur-
pose limitation (Art. 5(1)(b), GDPR), privacy-friendly default set-
tings, and controllability to users over their sensitive data from the
early design phase (Art. 25, GDPR). The principle of purpose limi-
tation has two components: 1) personal data shall only be collected
for specified, explicit, and legitimate purposes; and 2) collected
data shall not be processed in a different or incompatible manner
than for the initial purpose. Technically, one possibility to achieve
purpose limitation with cryptographic measures is by the means
of encryption and decryption. Only functions with legitimate pur-
poses are allowed to decrypt the personal data to guarantee purpose
binding. This way the controller monitors if functions receive the
decryption key, which allows access to specific data. Article 25
GDPR addresses two main aspects: 1) Privacy by Design; and 2)
Privacy by Default. The first aspect puts a general obligation on
data controllers to implement appropriate technical and organiza-
tional measures ensuring that principles related to the processing of
personal data are met. Since purpose limitation is the only principle
within the scope of this work, the implementation of appropriate
measures is also limited to achieving purpose binding. The second
aspect is meant to assure privacy-friendly default settings for data
collection. Although Privacy by Design and by Default include
both, technical and operational measures, this work focuses on the
technical measures.

3.2 System Model Development and Evaluation
For the system model development, we followed an iterative ap-
proach with three cycles. Feedback was given by an expert round
consisting of four post-docs and two industrial engineers. The first
round consisted of the development of the Policy Decision Point
(cf. Sect. 5.3.1) which defines rules for dealing with personal data in
vehicles. The focus was on data tagging as a suitable candidate to
achieve controllability of sensitive data in the vehicle system. The
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fundamentals of data tagging and the application in the automotive
context were then evaluated with the help of the expert round. In
the second round, the focus was on the Policy Enforcement Point
(cf. Sect. 5.3.2) and the analysis which PPTs are suitable. At the end,
attribute-based encryption was evaluated for automotive applica-
bility and presented to the same expert round. In the third and final
round, the combination of both technologies, which form the sys-
tem model, were presented and evaluated accordingly. After each
feedback round, the system model was reworked, and the feedback
was incorporated into the system model design.

4 USE CASE: “CONNECTED MOBILITY”
In this section we present the considered use case. For the sake of
generalizability, we chose a rather abstract use case. The user is
operating a car which has access to some external service running
or exchanging information in the cloud. The interaction of the user
with the car is realized by a Human Machine Interface (HMI). The
HMI allows the user to activate or deactivate automotive services
and to permit or decline access from the services to his personal
data. If the user changes settings, the Privacy Manager (PM) is
responsible for implementing them by managing the privacy policy
and applying and monitoring data protection measures. The PM
is also responsible for reacting to changes in the privacy policy
and adapting appropriate PPTs to meet pre-defined data protection
requirements. The Privacy Manager is the core of our system model
and will be explained in more detail in the next section.

Figure 1: Use Case Overview

Figure 1 shows a high-level perspective of the proposed system
model. Connected mobility refers to seamlessly connecting users,
vehicles, and services over the internet [1]. For the sake of sim-
plicity, we depict connected mobility services generically as an
external cloud. The arrows in Figure 1 are labelled with numbers
describing individual steps of the service usage. In the following,
we are describing the steps for the typical scenario of a connected
mobility service:

(1) Users want to run a connected mobility service in their vehi-
cle, which requires access to a specific set of sensitive data.
In this model, services without legitimate interest are by de-
fault denied access to personal data to ensure user-friendly

privacy settings. So as a first step, the service requests access
to the required sensitive data in the vehicle.

(2) The HMI offers users the possibility to interact with the
vehicle system. Users enter their privacy preferences which
either permits access to continue with the use of the service
or declines access via the HMI display panel. If users have
changed their privacy settings, e. g., from declined to allowed,
the changes must be updated in the privacy policy of the
vehicle system, which is managed by the PM.1 If there was no
change in the privacy settings, no further action is required.

(3) For the remainder of this use case, we assume that in step 2
the user changed the access policy for a service. Thus, the
changes must be reflected in the vehicle system accordingly.
The, the PM is informed about an updated privacy policy. As
a reminder, the privacy policy contains information such as
which services are permitted to access what type of data.

(4) Now the PM comes into play. The application provides suit-
able PPTs to achieve controllability over data in the vehicle
system and to only permit access to sensitive data for ser-
vices with legitimate interest. If the mobility service received
user permission to access the personal data related to the re-
questing service, the PM is responsible for applying suitable
PPTs to facilitate the access. When users change the policy
from “enable” to “deny”, the access for this service must be
revoked. The PPTs ensure that only permitted services can
actually read the data.

(5) After the PM applied suitable privacy protection measures,
the data is stored in a database. As a note, the policy update
does not affect previously stored data, but only data which
is stored after the policy update. In the current model, the
database is located inside the vehicle.

(6) The service accesses the database if permission is granted. If
access was denied, the service is not able to read the data.

5 SYSTEM MODEL
This chapter introduces the data protection-oriented system model.
The objective of the system model is the technical realization of
two selected GDPR articles as specified in Section 3 and is there-
fore focused on implementing purpose limitation, privacy-friendly
default settings, and to enable users to control their sensitive data.
Therefore, the model is strongly based on the assumptions defined
in Sect. 3. Several steps are required to coherently implement data
protection in a system. First, rules for handling sensitive data are
defined. Then, those rules are enforced in the vehicle system with
suitable technologies. Figure 2 illustrates the elements of the model
and their interactions. The figure depicts a component called Pri-
vacy HMI (PHMI) which allows the communication between the
vehicle and the users. Further details regarding the PHMIwill follow
in the next section.

The numbered steps are explained in the following:
(1) Over the PHMI, the user specifies his privacy preferences.
(2) Then, the PHMI interprets the user input into a machine-

readable format and updates the privacy policy accordingly.
1Remark: Users can change their privacy preferences independent from service re-
quests. The HMI, as any conventional interface, offers a dedicated section to privacy
settings, where users can proactively make changes to the privacy policy at any time.
In this case, step 1 is skipped, and the model begins with step 2.
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Figure 2: High-Level Design of the Model

(3) The Privacy Manager retrieves the changes from the pri-
vacy policy. From that point forward, the modified policy
settings are effective. The changes will not affect previously
processed datasets.

(4) The PM collects the requested data sources from a dedicated
database, which is not accessible to services.

(5) During the first step of processing, the defined data tags from
the privacy policy are applied to the plain data collected
earlier.

(6) In this step, the privacy tag is checked. Data that contains
sensitive information is encrypted using attribute-based en-
cryption.

(7) Finally, the processed data is stored in a data storage that is
accessible by mobility services.

5.1 Privacy Human Machine Interface
The Privacy HMI (see Figure 3) can be seen as an extract of a con-
ventional HMI in the vehicle that only contains the privacy settings.
The primary objective of the PHMI design is to ensure transparency
to the user by conveying an honest and comprehensive representa-
tion of the system settings. Additionally, it provides explicit control
over the storage, processing, and sharing of personal information.
Users can enter their privacy preferences transparently, which are
then reflected in the privacy policy. Afterwards, the PM can enforce
any necessary changes.

5.2 Privacy Policy
Privacy Policies in our system model are referring to structured
and machine-readable files containing information on all verified
mobility services, data sources, and their correlations. Note that
privacy policies, on the one hand, have content that is identical for
all users in a vehicle, but, on the other hand, also contain preferences
that differ for each vehicle user. As an example, the default settings
of a privacy policy are generally identical for all users. However,
differences occur when one driver allows the sharing of his sensitive
data while another driver refuses to share it. If the affected vehicle
is maintaining different user profiles, it is advised to also link the
privacy preferences to those user profiles. Table 1 lists the structure

Figure 3: Screencapture of Privacy HMI [11]

and data fields for each data source, i. e., a sensor. The first three
fields are generic information, which include a unique identifier
as a reference to the data type, the name of the data type, and a
concise description of the content of this data. The next three fields
relate to the privacy policy of the data identifiable information
(PII) is introduced. Then, the status of the data type is noted. The
policy status can either be ‘enabled’ by the user, ‘disabled’ by the
user, ‘mandatory’ due to legal reasons, or ‘unspecified’. The default
setting for any sensitive data is source. First, a field to identify if
the dataset contains personally ‘unspecified’, which implies that
access to the data source is not permitted (i. e., Privacy by Default).
Finally, the last field lists all legitimate purposes, for which the data
source is collected. The example in the last column shows how data
could look like for a GPS sensor.

Table 2 lists the structure and data fields for mobility services.
Each service has a unique identifier, a name, and a comprehensive
description. In the privacy policy, the status of each service is set
to ‘disabled’ by default. Additional data fields are a list of purposes
that are realized with this service and a list of all data types that are
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Table 1: Data Source Policy Description

Field Description Example
Data ID Unique identifier for

the data type
DS_30

Name Name of the data type
to be displayed to the
user

GPS

Description Concise description on
the information of this
data type

Provides the location
information at the time
of measurement

PII Determines if data type
is sensitive or not

sensitive

Status Determines if the col-
lection of this data
type is ‘enabled’ by the
user, ‘disabled’ by the
user, ‘mandatory’, or
‘unspecified’

disabled

Purposes A list of legitimate pur-
poses for which the
data type is collected

navigation, road condi-
tion, efficient driving

required for this service. Here, it is assumed that the services are
following the design principles of privacy by default, meaning the
services only request access to data which are necessary to provide
the main functionalities. The data sources can contain sensitive as
well as non-sensitive information. The example in the last column
defines a location and navigation service.

Table 2: Service Policy Description

Field Description Example
Service ID Unique identifier for

the service MS_46
Name Name of the service Location Service
Description Comprehensive de-

scription of the service
to be displayed to the
user

The Location and Nav-
igation Service traces
your trips to provide
reliable traffic informa-
tion, alternative routes,
possible points of in-
terest, or simply navi-
gate you to desired des-
tinations

Status Determines if the ser-
vice is ‘enabled’ or ‘dis-
abled’ by the user

disabled

Purposes A list of purposes that
are realized with the
service

navigation

Data Sources A list of data types that
are required to realize
this service

DS_03, DS_25, DS_30,
DS_39

5.3 Privacy Manager
The PrivacyManager consists of multiple architectural components,
which are represented in Figure 4. On the top level, the applica-
tion is split into the Policy Decision Point (PDP) and the Policy
Enforcement Point (PEP). The PDP makes use of the privacy policy
described in the previous section and determines rules how to deal
with (personal or sensitive) data. The PEP then executes the defined
privacy rules by applying PPTs.

Figure 4: Architectural Components of the Privacy Manager

Purpose limitation is accomplished through sticky policies (a
data tagging variant) and attribute-based encryption (ABE). Data
protection by default and by design is accomplished with the help of
privacy policies and data tagging. We describe the data processing
which shows the interplay between privacy policies, data tagging
and ABE in the next subsection. In the following subsections, we
dive into the PEP, and how data tagging, and ABE is applied in our
system model.

5.3.1 Data Processing. Before we describe the involved compo-
nents in more detail, we start with a high-level description of the
data flow. For that purpose, we describe how the dataset M is pro-
cessed within the application and how the key components of the
PM interact with each other as shown in Figure 5.

For a dataset𝑀 , metadata describing the dataset and in particular
if𝑀 contains personal identifiable information (PII) is attached to
the dataset. If 𝑀 does not contain PII, it is considered to be non-
sensitive data and stored in plain. If M contains PII, it is considered
to be sensitive data and stored encrypted (along with its metadata).
In this case, the application knows that the dataset contains sen-
sitive information and treats it differently. For the encryption an
ABE scheme is used to implement an access policy only allowing
legitimate services to decrypt the dataset. The following steps refer
to the numbers in Figure 5 and describe the process in more detail.

(1) The PM receives a dataset𝑀 as input.
(2) As a first step, the privacy policy for the dataset’s data type

is checked. As already described, the privacy policy states
which data types are considered sensitive.

(3) Next, metadata is attached to the dataset. As an example,
the additional data fields contain an ID as a reference to the
dataset, the name of the data type and a description of the
content.

(4) In addition to the generic metadata, information relating to
the privacy policy of the dataset is amended (here referred
to as sticky policies), e. g., a flag to identify if the dataset
contains PII. Also, the current policy status is attached (cf.
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Figure 5: Data Processing within the Privacy Manager

Table 1). The data tag ‘purposes’ lists all legitimate purposes
for which the dataset is collected. Technically, there is no
difference in the implementation of sticky policies compared
to any other metadata. All data tags are added to the payload
the same way.

(5) The non-sensitive dataset is stored in a database without any
additional privacy measures. Note that the tagged datasets
are stored in the database, which are of the data structure:
(ID|DATATYPE|DESCRIPTION|PII|STATUS|PURPOSES|M)

(6) Only sensitive data will undergo additional privacy preserv-
ing technologies. The distinction rule aims to limit the perfor-
mance footprint of the approach on automotive architectures.
In this model, the next step is to encrypt dataset 𝑀 using
attribute-based encryption.

(7) Attribute-based encryption, other than any conventional en-
cryption scheme, adds an access policy to the encrypted data.
The encryption algorithm takes the dataset𝑀 , attributes de-
scribing services that are allowed to access the dataset, and
an encryption key as input. The result is a Cipher 𝐶 with an
embedded access policy.

(8) Instead of adding dataset M in plaintext to the payload, for
sensitive data the corresponding cipher C is attached to the
metadata, meaning:
(ID|DATATYPE|DESCRIPTION|PII|STATUS|PURPOSES|C)

5.3.2 Policy Enforcement Point. In the last section, the rules for
handling sensitive data and mobility services were defined. Now,
these rules need to be translated and enforced in practice by a PEP.
The logic of enforcing the defined privacy rules is solely realized
inside the PEP. One core aspect of the system model is the different
handling of sensitive and non-sensitive data. Because of the differ-
ent treatment, data is tagged in a way that the sensitivity is visible
without disclosing the actual information. This way, the system

can distinguish between sensitive and non-sensitive data and addi-
tional measures can be enforced for sensitive information. This also
increases the controllability of the data within the vehicle system.
For this purpose, data tagging is used as a technique. Since the
PEP is able to selectively differentiate sensitive from non-sensitive
data, as a next step, the access to sensitive data must be secured
for legitimate purposes only. In the privacy policy, the prerequisite
for purposes to be listed under the data field Purposes has already
been defined as a criterion. As a next step, the PEP needs a suit-
able component to technologically facilitate the criteria. We make
use of attribute-based encryption for this purpose which offers the
possibility to cryptographically secure access to sensitive data with
purpose limitation.

5.3.3 Data Tagging. This section discusses considerations neces-
sary for applying privacy-centric data tagging in the automotive
environment and implementing it according to the described sys-
tem model. Although, on a conceptual level, the processing of data
according to a policy seems straightforward, on a technical level,
automatically differentiating various data types may prove to be
difficult. A serialization format is required to harmonize between
different data types providing structured inputs for the policy en-
forcement. Generally, any serialization format can be used or even
an own standard could be defined. However, using standardized
containers is the preferred solution in this work, as they simplify
the abstraction of different formats and provide a unified way to
enforce sticky policies. Once a generic data container is defined, all
datasets are standardized with the same data structure. In the fol-
lowing, we describe the sequence of data tagging within our model.
First, the PM obtains the plain data from the dataset requested by
a service. The member values are taken from the privacy policy
for the respective data type. When the PII flag is set to “false”, all
further privacy-related processing is skipped. As a last step, the
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plain data is appended as a payload to the data structure and the
object is then stored in a database. With the help of sticky policies,
users can directly control how their data should be processed, han-
dled, and shared by explicitly expressing their preferences and data
handling policies [25]. To function properly, sticky policies must
be compatible with generally applicable privacy policies, and vice
versa. Based on the dynamic taint policies proposed by Schwartz et
al. [34], the following rules are derived:

(1) Tag Introduction: Tag introduction specifies how, when, and
which type of data tags are introduced into a system. This
model introduces the data fields outlined in Table 1 as tags
to a dataset. Only datasets required by services (i. e., data
sources) are tagged, which reduces performance overhead.
Each data source (e. g., velocity, location, time) has its own
policy definition (cf. Example in Table 1). The Privacy Man-
ager analyses the requested datasets, retrieves their defini-
tion from the privacy policy, and adds the data fields as tags
to the plain data. Depending on the sensitivity, either ad-
ditional measures are applied to the tagged dataset, or it is
directly stored.

(2) Tag Propagation: Often privacy implications arise from com-
bining different data types, for example, when data are cou-
pled with vehicle identifiers. These datasets are referred to
as aggregated data. As a general rule, the aggregation of data
should be avoided if not necessary for service functionalities.
In the exceptional case where aggregation is needed (e. g.,
GPS requires aggregation of location and time), tag propa-
gation defines the rules for inheriting data tags, specifically
if sensitive data is involved. If two data sources ‘DS1’ and
‘DS2’ are combined to create a new data source, the resulting
data source ‘DS3’ is set to sensitive, if at least one of them is
sensitive. The remaining data fields must be specified in the
privacy policy.

(3) Tag Checking: Sensitive data awaits further data process-
ing, while non-sensitive data is made available to services
without any additional measures. Since the PM is able to se-
lectively differentiate sensitive from non-sensitive data, the
access to sensitive data must be secured for legitimate pur-
poses only. As a first step, the data field PII must be checked.
Furthermore, the items listed under Purposes must be re-
spected for earmarked data processing. A technical solution
to integrate purpose limitation is ABE and described the next
section.

If the purpose of data tagging is to track the data flow of sensitive
information inside a system, a minimal implementation such as
setting a single bit for reflecting the PII status is sufficient. As an
example, Taintdroid [13] provides data tracking at multiple gran-
ularities with minimal taint tags which results in a performance
overhead of 32% on a CPU-bound microbenchmark. It is an exten-
sion to the Android mobile-phone platform that tracks the flow of
privacy-sensitive data through third-party applications. Its primary
goal is to detect when sensitive data leaves the system. TaintDroid
automatically labels data from privacy-sensitive sources and when
tainted data leaves the network, e. g., transmitted over the network,
the data’s label, the application responsible for transmitting the
data, and the data’s destination are logged. Such real-time feedback

is intended for users to give insight into what applications are do-
ing with sensitive data and to potentially identify misbehaviour.
The same system design approach is adjustable to vehicle envi-
ronments. Thus, the data flow of sensitive information becomes
trackable inside the vehicle to identify leakage points and to react
accordingly.

5.3.4 Attribute-Based Encryption. One way to achieve purpose
limitation is to control access to personal data. Any conventional
encryption mechanism can be applied to satisfy this requirement.
A major advantage of attribute-based encryption is that it reduces
the cost of multiple-receiver end-to-end encryption [17] without
compromising security, since datasets only need to be encrypted
once for multiple receivers. There are two possibilities with ABE
to obtain data access control: 1) CP-ABE; and 2) KP-ABE. With CP-
ABE the access policy travels with the data while KP-ABE defines
policies for the decryption keys. CP-ABE offers better control to the
data producer on his data than KP-ABE [37]. Also, the CP-ABE ap-
proach resembles the sticky policy paradigm presented in Sect. 5.3.3.
Since the scope of this work is to ensure purpose limitation for data
processing and to grant user controllability by reflecting their data
sharing preferences, we chose CP-ABE. Next, we explain the initial
steps that are required to set up a CP-ABE environment. Afterwards,
the primitives for implementing a CP-ABE scheme are explained
in more detail. At the end, the approach for realizing purpose lim-
itation with ABE and the help of previously declared data tags is
described. In general, mechanisms based on ABE need a trusted
authority (TA) to generate and distribute secure keys for authorized
entities. In the infrastructure of the automotive industry, the OEM
backend can take over the role of a trusted authority. The OEM has
to be considered as a trusted party anyway since the OEM is able
to control software and hardware used in the vehicle. Users can
decide which OEM they want to trust by purchasing their vehicle
from their prefered OEM. The OEM acts as Key Distribution Centre
(KDC) and needs to setup and manage the following two functions
for each vehicle system [37]:

(1) generate and distribute the key used for encryption called
encryption key 𝐸𝐾 , which is unique for each vehicle system

(2) generate and assign each data consumer a decryption key
𝐷𝐾 with an embedded set of attributes 𝛾

The 𝐸𝐾 is used by the data producer, the car, to encrypt its
data and the decryption key is used by the data consumer, the
service, to decrypt the encrypted data. Once the encryption and
decryption keys are generated and assigned to the correct entities,
the ABE mechanism can commence between data producers and
data consumers without further involvement from a third party.
The generation and distribution of an 𝐸𝐾 is a one-time task for
each vehicle system. Thus, the required encryption key shall be
generated and provisioned into the vehicle at a production facility.
Each data consumer participating to the scheme is considered an
authorized entity and is securely provisioned with a 𝐷𝐾 and an
embedded set of attributes 𝛾 . However, if a 𝐷𝐾 is compromised, a
key revocation procedure shall be executed. Here, the procedure
by Sicari et al. can be used. The interested reader can refer to [37]
for more details. The TA is responsible for detaining a list of all
services and their attribute sets and to verify that declared attributes
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describe the consumer. Formally, all CP-ABE schemes are modelled
by at least the following four primitives [15, 37]:

(1) Setup: Setup(𝜅) → (𝑀𝐾, 𝐸𝐾)
This algorithm initializes the CP-ABE scheme. The setup
algorithm is executed by the TA and takes a security parame-
ter 𝜅 as input to generate a master key𝑀𝐾 and an associated
encryption key 𝐸𝐾 . The master key is kept secret by the TA.

(2) Key Generation:: KeyGen(𝑀𝐾,𝛾) → 𝐷𝐾

In this the TA generates a decryption key 𝐷𝐾 for a data
consumer. KeyGen embeds its input, the master key𝑀𝐾 and
a set of attributes 𝛾 into the decryption key 𝐷𝐾 .

(3) Encryption: Encrypt(𝑀,𝑇, 𝐸𝐾) → 𝐶

For the encryption, one enters a plaintext 𝑀 with the ac-
cess policy 𝑇 and the encryption key 𝐸𝐾 . The algorithm
outputs the encrypted data 𝐶 , which embeds the access pol-
icy 𝑇 . The encryption algorithm can be executed by any
component of the vehicle network. This step is computation-
ally demanding, which makes its execution challenging on
resource-constrained devices [3].

(4) Decryption: Decrypt(𝐶, 𝐷𝐾) → 𝑀

For decryption, the encrypted data 𝐶 and a decryption key
𝐷𝐾 is taken as input. The output is the content of the plain-
text message𝑀 if the consumer satisfies the embedded ac-
cess policy 𝑇 . Otherwise, decryption is unsuccessful and
the algorithm outputs nothing. Mathematically, the decryp-
tion is successful only if the attribute set 𝛾 embedded in 𝐷𝐾
satisfies the access policy 𝑇 embedded in 𝐶 . As a remark,
the access policy is a Boolean formula composed by certain
attributes. If an attribute inside the access policy belongs
to 𝛾 , it is considered true for the policy evaluation. The de-
cryption algorithm is executed by a data consumer holding
the appropriate decryption key 𝐷K. This step is also com-
putationally demanding for resource-constrained devices
but proven to be manageable by modern IoT devices (e. g.,
tablets, smartphones), as verified in [4].

As previously declared, the main motivation for applying ABE
in the system model is to achieve purpose limitation. So far, the
rightful purposes, for which the access to data sources is allowed,
were defined as a data tag in the data source policy (cf. Table 4).
Now those purposes need to be reflected in the access policy of
the sensitive dataset. Figure 6 shows how data tagging and ABE
interact with each other. The left box depicts the tagged dataset.
The right box shows the building blocks of CP-ABE. All legitimate
purposes are listed in the data tag Purposes, which are taken as
the access policy for encryption with CP-ABE. As a reminder, only
sensitive data is handled this way.

As for the services, all purposes that are realized through a ser-
vice are outlined in the privacy policy (cf. Table 2). Those purposes
must be incorporated as attributes into their individual decryption
keys. It is only then that services complying with the access policy
can decrypt the data. Regarding the automotive trends [24], mod-
ern vehicles are well equipped for processing vast amounts of data,
unlike typical IoT devices. Therefore, it is assumed that lightweight
implementations of ABE developed for resource constrained IoT
devices are feasible for vehicle infrastructures as well the additional
overhead for the encryption can be handled.

6 DISCUSSION AND EVALUATION
The presented systemmodel technically enforces purpose limitation
by combining privacy policies with data tagging and attribute-based
encryption (ABE). To ensure purpose limitation, only services with
legitimate purposes are able to decrypt personal data. An imple-
mentation with ABE is advantageous in systems with multiple
recipients since the data only needs to be encrypted once. This
allows the user to control the data with reasonable effort. As a
result, the data controller can control which services may receive
the key for decryption, which provides access to the protected
data. Besides enforcing the users’ preferences, this also raises eth-
ical questions [40] since it enables the data controller to allow or
deny 3rd party services in a similar manner than app stores for
mobile phones are guarding the users’ mobile phones with the dif-
ference that due to the encryption this central guard may not be
by passed, e. g. with the help of a 3rd party app store. While this
is desirable for the prevention of undesired data flows, it also has
consequences for the underlying business models and might result
in law suits of 3rd parties in trying to get access to the ecosystem
which was already seen for app stores on mobile phones. The de-
scribed model showed how privacy policies are defined for one
vehicle system. If users want to have the same privacy settings for
a specific dataset in another system, they would have to adjust the
preferences at each of the target systems again. Going one step fur-
ther, machine-readable policies can stick to data defining allowed
usage and obligations when travelling across multiple parties. In
other words, if data is transferred to a target system, the corre-
sponding policy is transmitted with it. When policies are attached
to datasets, the receiving party can adopt the privacy preferences in
the corresponding system. This has the benefit that users only need
to set their preferences once instead of managing them individually
for every new system (e.g., vehicle, smartphone, smart home, etc.).
However, the user must still have the possibility to change his pref-
erences at any access point. The EnCoRe project [25] has already
developed a technical solution for privacy management enabling
users to improve control over their personal information, which is
suitable for use in a broad range of domains. The presented system
model is also prepared for future developments, i.e., due to the use
of encryption to technically enforce the purpose limitation, there
is no disadvantage should data be stored outside of the car, e.g., in
a cloud environment. Without a correct decryption key, the data
stays encrypted, and can not be used for other purposes. Depend-
ing on the implemented granularity of fine-grained access control
either each service could have its own label or services are grouped
within several categories. The former requires more computational
overhead since the access tree must contain each permitted service
ID individually. The higher the number of attributes included in
the access policy, the larger the computational overhead. The latter
requires the change of keys each time a certain service becomes
undesired and should lose access to the data.

6.1 Limitations
The proposed system model has several limitations. First of all, the
assumptions defined in Sect. 3.1.1 are varyingly difficult to address.
While state of the art hardware already aims to ensure integrity
and confidentiality measures (Assumption 1), the data classification
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Figure 6: Purpose Limitation with ABE

process is harder (Assumption 2). On the one hand, care has to be
taken that data linking doesn’t allow inference attacks [24]. With in-
ference attacks seemingly non-sensitive data could be combined to
possibly allow a (re-)identification of persons resulting in sensitive
data [38]. This has already been demonstrated for data extracted
from logs of the CAN bus [18] or for sensors embedded in a car’s
seat [31]. If the (re-)identification is desired, i.e. for personalizing
the car and assistance system, or a threat to the users’ privacy, i.e.
using the data to the driver’s disadvantage by claiming drug usage
after an accident, strongly depends on the use case. The problem
to distinguish between sensitive and insensitive data becomes even
more difficult in case the data is unstructured [39]. The compliance
of the involved 3rd party services is also hard to ensure (Assump-
tion 3). Once the data has left the system and the service is granted
access to the data, because it fulfils the conditions for providing a
legitimate service, the data is unencrypted and uncontrolled usage
or data sharing can not be prevented anymore. As a consequence,
a strict monitoring or auditing of 3rd parties would be desirable to
avoid the loss of control.

6.2 Evaluation
As already discussed, the system model followed an iterative devel-
opment with three cycles. The intermediate result after each round
was presented to an expert group and after each feedback round,
the system model was revised, and the relevant suggestions were
incorporated into the system model design. The first version of the
system model did not take taint propagation into account. Thus, the
second version defined rules for taint propagation. After expanding
the system model with ABE, the impact of key distribution using
ABE in the automotive industry were not reflected. Those aspects
were introduced in the final version of the system model. With the
assumptions and scope described in Sect. 3.1 and the limitations dis-
cussed in the previous subsection, the expert group gave a positive
evaluation of the final system model.

7 CONCLUSION AND FUTUREWORK
The data protection-oriented system model presented in this work
illustrates the realization of a technical enforcement for purpose
limitation as required by Art. 5(1)(b) of the GDPR. In this model,
purpose limitation is accomplished through sticky policies and
attribute-based encryption. Furthermore, data protection by default
and by design is accomplished with the help of privacy policies and
data tagging. Data flow analysis showed to be a good starting point
to provide users real-time feedback on their data handling inside
the vehicle. Smart cities are the future [5], where vehicles, smart
devices, smart homes, and so on are all connected. Ideally, there
will be one central point for identity management, where users can
also set their privacy preferences (cf. Self-Sovereign Identity [26]).
Once the preferences are set, they can easily be adopted to con-
nected systems. In order to realize this, every connected system
must be able to read, apply, and exchange privacy policies attached
to datasets. It will be a future challenge. A further challenge is to
technically enforce other privacy rights defined in the GDPR. Once
it is known how to technically enforce each of them, the next chal-
lenge is to enforce them altogether as an integrated mechanism. In
this work, a theoretical concept of the data protection-oriented sys-
tem model was presented. Future work should set the motivation
for the simulation part, which will provide a proof of concept for
the presented system model. Following this, the performance of the
simulation program should be evaluated since vehicles come with
computational limitations. As a final step, architectural considera-
tions that are fundamental to applying the model to an automotive
environment shall be discussed.
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