Sample or Random Security – A Security Model for Segment-Based Visual Cryptography

Sebastian Pape

Dortmund Technical University

March 5th, 2014

Financial Cryptography and Data Security 2014

Overview

1 Introduction

- Visual Cryptography
- 2 Sample-Or-Random Security
- 3 Summary and Outlook

Scenario

Summary and Outlook

Visual Cryptography - Idea

Uni Kassel

(a) Transparencies side by side

(b) Transparencies stacked

Introduction

SOR-CO 0000000000000 Summary and Outlook

Pixel-based Visual Crypt. (Naor and Shamir, 1994)

Figure: Shares With 4 Sub-pixels in a 2x2 Matrix

Summary and Outlook

Segment-based Visual Cryptography (Borchert, 2007)

Introduction 0000000 SOR-CO 0000000000000 Summary and Outlook

Dice Codings (Doberitz, 2008)

Summary and Outlook

Visual Cryptography - Application

Figure: Keypad of a cash machine

Figure: Keypads in visual Cryptography (Borchert, 2007)

Summary and Outlook

Reminder: Reusing Key-Transparencies

Figure: Combination of 3 transparencies

Overview

1 Introduction

2 Sample-Or-Random Security

- Real-Or-Random Security
- Sample-Or-Random Security
- Relation between ROR CPA and SOR CO
- Evaluation

3 Summary and Outlook

Introduction

 Summary and Outlook

Real-Or-Random (*ROR – CPA*)

Bellare et al. (1997)

Experiment

$$\mathsf{Exp}_{A,\Pi}^{\textit{ror-cpa-b}}(n) = b'$$

 $\begin{array}{lll} k & \leftarrow & \operatorname{GenKey}(1^n) & | & \operatorname{Key generation} \\ b & \in_R & \{0,1\} & | & \operatorname{Random choice of } b \\ b' & \leftarrow & A^{\mathcal{O}_{\mathcal{RR}}(\cdot,b)} & | & \operatorname{Adversary tries to determine } b \end{array}$

Adversary's advantage

Adv = Pr[correct] - Pr[false]

$$\mathsf{Adv}_{A,\Pi}^{\textit{ror-cpa}}(n) \stackrel{\text{def}}{=} \Pr[\mathsf{Exp}_{A,\Pi}^{\textit{ror-cpa-1}}(n) = 1] - \Pr[\mathsf{Exp}_{A,\Pi}^{\textit{ror-cpa-0}}(n) = 1]$$

Sebastian Pape

Why Ciphertext-Only Securitymodel?

- CPA is not suitable for visual cryptography
 - Adversary may not have access to an encryption oracle
- CPA is too strong
 - use of XOR allows determining the key
 - e.g. encryptions of □ or 8
- Allow Trade-off: Weaker securitymodel vs. easier key handling
- ⇒ CO-Securitymodel

Summary and Outlook

Sample-Or-Random (SOR - CO)

Experiment

 $\mathsf{Exp}_{A,\Pi}^{sor-co-b}(n) = b'$

 $k \leftarrow$ GenKey(1ⁿ)Key generation $b \in_R$ $\{0,1\}$ Random choice of b $b' \leftarrow$ $A^{O_{SR}}(struct)$ Adversary tries to determine b

Adversary's advantage

$$Adv = Pr[correct] - Pr[false]$$

$$\mathbf{Adv}_{A,\Pi}^{sor-co}(n) \stackrel{\text{def}}{=} \Pr[\mathbf{Exp}_{A,\Pi}^{sor-co-1}(n) = 1] - \Pr[\mathbf{Exp}_{A,\Pi}^{sor-co-0}(n) = 1]$$

Sebastian Pape

Summary and Outlook

Relation between ROR – CPA and SOR – CO

Figure: Relation between Securitymodels for Symmetric Encryption

Relation between ROR – CPA and SOR – CO

Theorem

Notion of SOR – CO is weaker than ROR – CPA.

Lemma 1:

$[ROR - CPA \Rightarrow SOR - CO]$

If an encryption scheme Π is secure in the sense of ROR - CPA, then Π is also secure in the sense of SOR - CO.

Lemma 2:

 $[SOR - CO \Rightarrow ROR - CPA]$

If there exists an encryption scheme Π which is secure in the sense of SOR - CO, then there is an encryption scheme Π' which is secure in the sense of SOR - CO but not ROR - CPA.

$[SOR - CO \Rightarrow ROR - CPA] - Proof$

Lemma 2:

$[SOR - CO \Rightarrow ROR - CPA]$

If there exists an encryption scheme Π which is secure in the sense of SOR - CO, then there is an encryption scheme Π' which is secure in the sense of SOR - CO but not ROR - CPA.

Sketch of Proof

- Assumption: $\Pi = (GenKey, Enc, Dec), SOR CO$ -secure exists
- Derive Π' = (GenKey', Enc', Dec'),
 Lemma 2a: SOR CO-secure,
 Lemma 2b: but not ROR CPA-secure
- Idea: 'mark ciphertexts', to contradict ROR CPA-security

$[SOR - CO \Rightarrow ROR - CPA]$ – derived encryption scheme

Sample struct

sample₁

sample_{keypad} $\in_R \{\gamma \mid \gamma = \gamma_0 ||\gamma_1|| \dots ||\gamma_n \land \forall i, j \text{ with } 0 \le i, j \le n \dots \gamma_i \ne \gamma_j\}$

Algorithms $\Pi' = (\text{GenKey}', \text{Enc}', \text{Dec}')$:

Algorithm GenKey'(1ⁿ): $k \leftarrow \text{GenKey}(1^n)$ return k

Algorithm
$$\operatorname{Enc}_{k}'(m)$$
:
 $c \leftarrow \operatorname{Enc}_{k}(c)$
if $m = 0 \dots 0$
then $c' := 0 || c$
else
 $c' := 1 || c$
return c'

Algorithm
$$\text{Dec}'_k(c')$$
:
 $c' = \alpha_1 ||\alpha_2|| \dots ||\alpha_{|c'|}|$
 $c := \alpha_2 || \dots ||\alpha_{|c'|}|$
 $m := \text{Dec}_k(c)$
return m

$[SOR - CO \Rightarrow ROR - CPA]$ Lemma 2a - Details

Lemma 2a:

 $\Pi' = (GenKey', Enc', Dec')$ is secure in the sense of SOR - CO given the sample structure sample₁.

Proof.

b b = 0 ('sample mode'): No change, $0 \dots 0$ never appears

■ b = 1 ('random mode'): Negligible Adv_{\sharp} , $Pr[0...0] = \frac{1}{(n+1)^{n+1}}$

$$\begin{aligned} \mathbf{Adv}_{A,\Pi'}^{sor-co}(n) &= \Pr[\mathbf{Exp}_{A,\Pi'}^{sor-co-1}(n) = 1] & -\Pr[\mathbf{Exp}_{A,\Pi'}^{sor-co-0}(n) = 1] \\ &\leq \Pr[\mathbf{Exp}_{A,\Pi}^{sor-co-1}(n) = 1] + Adv_{\sharp} & -\Pr[\mathbf{Exp}_{A,\Pi}^{sor-co-0}(n) = 1] \\ &= \mathbf{Adv}_{A,\Pi}^{sor-co}(n) + Adv_{\sharp} \end{aligned}$$

Summary and Outlook

$[SOR - CO \Rightarrow ROR - CPA]$ Lemma 2b - Details

Lemma 2b:

 $\Pi' = (GenKey', Enc', Dec')$ is not secure in the sense of ROR - CPA.

Proof.

- Adversary asks $O_{\mathcal{RR}}(\cdot, b)$ for encryption of '0...0'.
- If $O_{\mathcal{RR}} \to 0 \| \dots \Rightarrow b = 0$ ('real mode')
- If $O_{\mathcal{RR}} \to 1 \| \dots \Rightarrow b = 1$ ('random mode')

$$\begin{aligned} \mathsf{Adv}_{A_{cpa},\Pi'}^{ror-cpa}(n) &= \Pr[\mathsf{Exp}_{A_{cpa},\Pi'}^{ror-cpa-1}(n) = 1] \quad -\Pr[\mathsf{Exp}_{A_{cpa},\Pi'}^{ror-cpa-0}(n) = 1] \\ &= 1 - \frac{1}{(n+1)^{n+1}} \qquad -0 \end{aligned}$$

Summary and Outlook

Relation between ROR – CPA und SOR – CO

\Rightarrow Lemma 2:

 $[SOR - CO \Rightarrow ROR - CPA]$

If there exists an encryption scheme Π which is secure in the sense of SOR - CO, then there is an encryption scheme Π' which is secure in the sense of SOR - CO but not ROR - CPA.

Theorem

SOR – CO is weaker than ROR – CPA.

Evaluation: SOR – CO at 7-Segment / Dice Codings

- Difference of 2 "Keypad-Ciphertexts" is even
- Adversary
 - asks for 2 ciphertexts
 - if difference is even
 - \Rightarrow b = 0 ('sample mode')
 - if difference is odd

 \Rightarrow b = 1 ('random mode')

$$\begin{aligned} \mathbf{Adv}_{A,\Pi'}^{sor-co}(n) &= \Pr[\mathbf{Exp}_{A,\Pi'}^{sor-co-1}(n) = 1] & -\Pr[\mathbf{Exp}_{A,\Pi'}^{sor-co-0}(n) = 1] \\ &= \Pr[A = rand|O = rand] & -\Pr[A = rand|O = samp] \\ &= \frac{1}{2} & -0 \end{aligned}$$

Idea for countermeasure: add noise to the ciphertexts

Summary and Outlook

Dice Codings with Noise

Figure: Visualization for n = 9 and v = 7

Table: Contingency Table

Overview

- 1 Introduction
- 2 Sample-Or-Random Security
- 3 Summary and Outlook

Summary and Open Questions

- SOR CO Securitymodel
 - Relation to ROR CPA
- Visual encryption scheme making use of noise
 - Conjecture: SOR-CO-secure if parameters chosen accordingly
- SOR CO-security
 - Is Random-or-Sample Security a sufficient choice
 - SampleA-or-SampleB Security?
 - What about active adversaries?
- Dice codings with noise
 - Given n and v for how many ciphertexts is the scheme SOR-CO-secure?

References I

- M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In Proceedings of 38th Annual Symposium on Foundations of Computer Science (FOCS 97), pages 394–403, 1997.
- B. Borchert. Segment-based visual cryptography. Technical Report WSI-2007-04, Wilhelm-Schickard-Institut für Informatik, Tübingen, 2007.
- D. Doberitz. Visual cryptography protocols and their deployment against malware. Master's thesis, Ruhr-Universität Bochum, Germany, 2008.
- M. Naor and A. Shamir. Visual cryptography. In A. D. Santis, editor, EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 1–12. Springer, 1994. ISBN 3-540-60176-7.