

Gitterbasierte Kryptosysteme (Ajtai-Dwork, Regev)

Sebastian Pape

Überblick

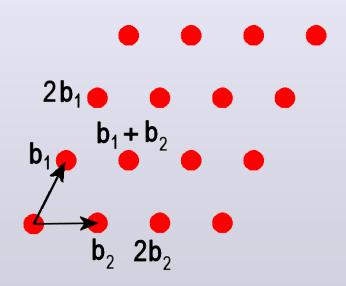
- Motivation
- Gitter
 - SVP, uSVP, Gitterbasisreduktion
- Kryptosysteme
 - Ajtai-Dwork
 - Regev (2003), Regev (2005)
- Zusammenfassung

Motivation

- "Standard"-Kryptographie
 - z.B. Faktorisieren, diskrete Logarithmen
 - durch Quantencomputer lösbar
- Gitter-basierte Kryptographie
 - z.T. Worst-Case-Härte (AD, Regev \leftrightarrow NTRU)
 - bis jetzt nicht durch Quantencomputer lösbar
 - keine besseren Quantenalgorithmen bekannt

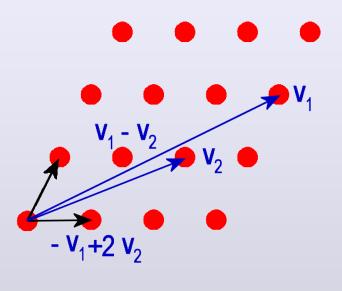
Gitter

- Basis: $b_1, ..., b_n$ in Υ^n
- Gitter: $\sum \lambda_i b_i$ für λ_i in ∞
- Was ist der kürzeste Vektor?



Shortest Vector Problem

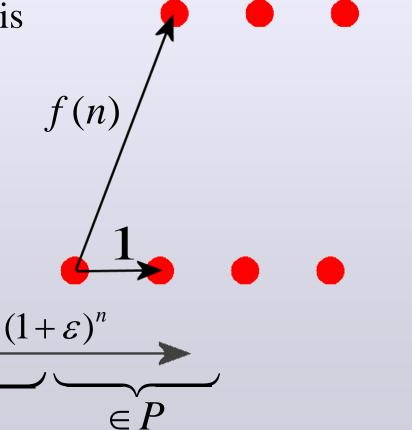
- Doch nicht so leicht?
- exp. Approx. polyn. Laufzeit
 - LLL, Schnorr
- exakte Ber. exp. Laufzeit
- Approx. auf $\sqrt{2}$ NP-Hart (rand. Reduktion)
- determ. Redukt. offen

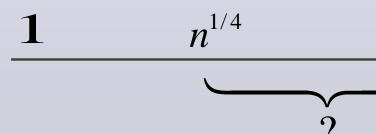


unique Shortest Vector Problem

 kürzester Vektor ist bis auf Faktor f(n) eindeutig

- $(1+\varepsilon)^n$ -uSVP-Alg.
- n^{1/4}-uSVP nicht NP-hart

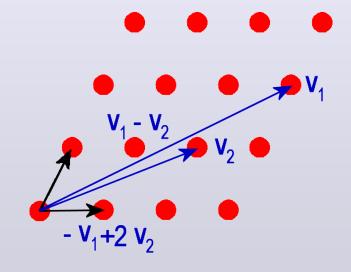




Gitterbasisreduktion

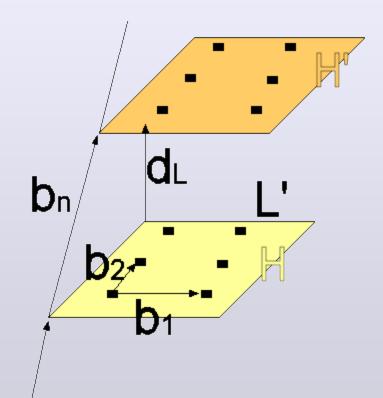
 gesucht: Basis aus kurzen, orthogonalen Vektoren

verschiedene
 Definitionen von
 reduzierten Basen



(d,M)-Gitter

- Gitter L'
 - Basis B mit Länge ≤ M
 - (n-1) dimensional
- Hyperebene H
 - L' ∈ H
 - Abstand zu H': $d_L > d$
- eindeutig wenn d > M
 - $\rightarrow L^{(d,M)}$
- Hidden Hyperplane Assumption



Kryptosysteme

- Ajtai-Dwork (1996)
 - Goldreich, Goldwasser, Halevi (1997)
 - Ngyuen, Stern (1998, 1999)
- Oded Regev (2003)
- Oded Regev (2005)

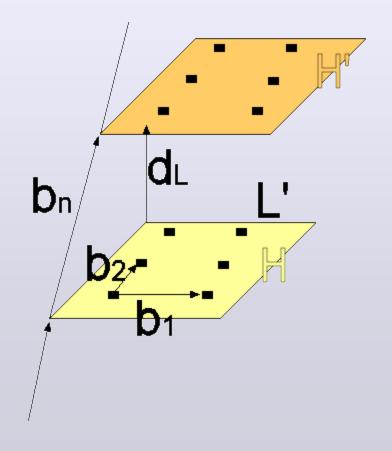
Kryptosysteme II

- Gemeinsamkeiten
 - bitweise Verschlüsselung
 - ⇒ probabilistische Verschlüsselung
 - Sicherheit beruht auf Worst-Case-Problemen
 - brechen des KS → Lösung für beliebige Instanz des Problems
 - benutzen "Rauschen"
- Ajtai-Dwork, Regev (2003)
 - nicht sicher gegen CCA
 - folgt fast direkt aus Reduktionsbeweisen

Ajtai-Dwork – Gitter generieren

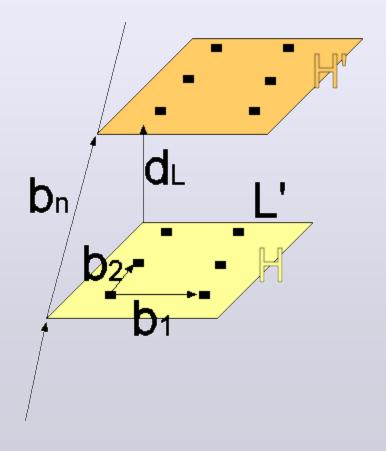
Generieren

- zufällige Basis für L' mit $||b_i|| \le M$
- wähle d ≥ n^5 M
- wähle b_n mit Abstand $d \le d_L \le 2d$ von H



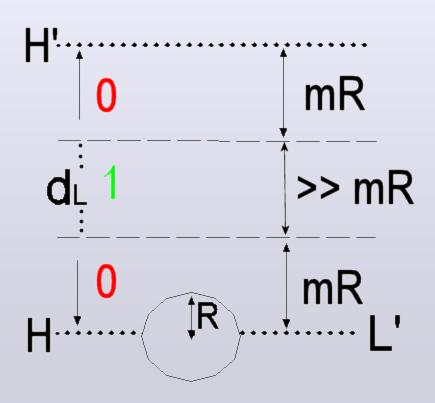
Ajtai-Dwork – Schlüssel

- Privater Schlüssel
 - beliebige Basis von $L' = L^{(d,M)}$ oder H
- Öffentlicher Schlüssel
 - zufällige Basis B` für L
 - -M



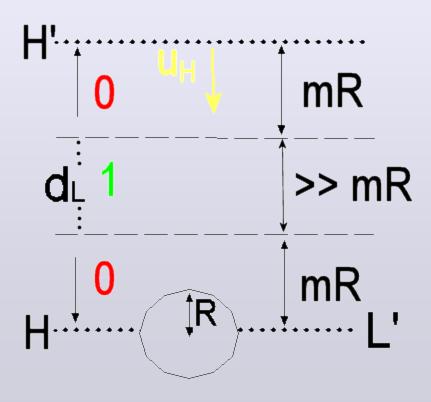
Ajtai-Dwork – Verschlüsselung

- $1 \rightarrow u$
 - zufälliger Punkt u
- $0 \rightarrow v + w$
 - zufälliger Punkt v in L
 - Störungw = pert(n³M,m)
- Störung pert(R,m)
 - m ≥ 4n zufälligeVektoren aus derKugel mit Radius R



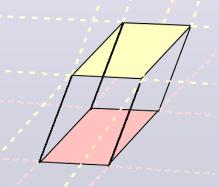
Ajtai-Dwork – Entschlüsselung

- u_H zu H orthogonaler Einheitsvektor.
- frac <u_H, z> / d_L
- 0: im Bereich mR/d_L von 0 oder 1
- 1: sonst



Ajtai-Dwork Hauptvariante (Skizze)

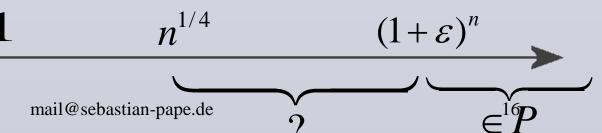
- privater Schlüssel ist zufälliger Vektor u_H
- öffentlicher Schlüssel sind "verrauschte"
 Gitterpunkte der durch u_H erzeugten Hyperebenen,
 Teil der Gitterpunkte spannt Parallelepiped PE auf
- V0: Wahl zufälliger Punkte des PK Summe und Reduktion in PE
- V1: zufälliger Punkt in PE
- E: $\langle z, u_H \rangle$ fast ganzzahlig $\rightarrow 0$



Ajtai-Dwork Zusammenfassung

- Originalsystem von Ajtai und Dwork
 - Entschlüsselungsfehler
 - $O(n^8)$ -uSVP
- Goldreich,
 Goldwasser, Halevi
 - beseitigen Fehler
 - $O(n^7)$ -uSVP

- Angriff von Nguyen und Stern
 - mit $n^{0,5-\varepsilon}$ -SVP-Approx.
 - Parameter fuer AD zu schlecht fuer realistischen Einsatz
 - n=32, PK~20MB,1b→768B



Regev (2003) – Schlüssel

- Generieren
 - grosse, ganze Zahl N
- Privater Schlüssel

$$-h \in [\sqrt{N}, 2\sqrt{N}) \cap \square$$

- Öffentlicher Schlüssel
 - m = O(log N) Zahlen a_i
 aus {0, 1, ..., N-1}
 nahe bei ganzzahligen
 Vielfachen von N / h
 - Index i₀, so dass a_{i0}
 nahe bei einem
 ungeraden Vielfachen
 von N / h
 - h muss N nicht teilen

Regev (2003) – Verschlüsselung

- Öffentlicher Schlüssel
 - m = O(log N) Zahlen a_i
 aus {0, 1, ..., N-1}
 nahe bei ganzzahligen
 Vielfachen von N / h
 - Index i₀, so dass a_{i0}
 nahe bei einem
 ungeraden Vielfachen
 von N / h
 - h muss N nicht teilen

- Verschlüsselung
 - 0: Summe aus einer
 zufälligen Teilmenge
 {a₁, ..., a_m} modulo N
 - 1: wie Verschlüsselung von 0, aber \[a_{i0} / 2 \] addieren

Regev (2003) – Entschlüsselung

Verschlüsselung

- 0: Summe aus einer
 zufälligen Teilmenge
 {a₁, ..., a_m} modulo N
- 1: wie Verschlüsselung
 von 0, aber \[a_{i0} / 2 \]
 addieren

Entschlüsselung

- betrachte Rest vonz / (N/h)
- 0: klein
- 1: sonst

Grund

- a_i nahe bei Vielf. N/h
- also auch alle Summen
- $\lfloor a_{i0} / 2 \rfloor$ weit entfernt

Regev (2003) – Hash

- m=O(log N) Zufallszahlen aus $\{0, 1, ..., N-1\}$
- Hashfunktion: $f(b) = \sum_{i=1}^{m} b_i a_i \mod N$ mit $b \in \{0,1\}^m$

• Kollision: $\sum_{i=1}^{m} b_i a_i \equiv 0 \mod N \text{ mit } b \in \{-1, 0, 1\}^m$

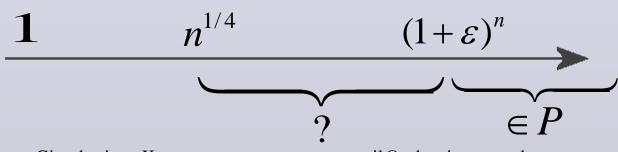
Regev (2003) – Sicherheit (Skizze)

- Unterscheiden zwischen 0 und 1 bzw. finden eines Kollisionsvektors
- \Rightarrow Unterscheiden zwischen Gleichverteilung U und einer Verteilung T_h um ganzzahlige Vielfache von 1/h für ein unbekanntes h
- \Rightarrow O(n^{1,5})-uSVP

Regev (2003) Zusammenfassung

- Gitter werden nur implizit benutzt
- Sicherheit beruht auf
 - $O(n^{1,5})$ -uSVP
 - AD: $(O(n^7)$ -uSVP)

 nicht nur Public-Key-System, sondern auch Hash-Funktion



Regev (2005) – Schlüssel

- Generieren
 - m, p, Wahrscheinlichkeitsverteilung χ auf 'p
- Privater Schlüssel

$$S \in \prod_{p}^{n}$$

Vorbereitung

$$a_1, \ldots, a_m \in \prod_{p}^n$$

$$e_1,...,e_m \in \prod_p \operatorname{nach} \chi$$

• Öffentlicher Schlüssel:

$$-(a_i,b_i)$$
 mit

$$b_i = \langle a_i, s \rangle + e_i$$

Regev (2005) – Verschlüsselung

Vorbereitung

$$a_1,...,a_m \in \prod_{p}^n$$

$$e_1,...,e_m \in \prod_p \operatorname{nach} \chi$$

• Öffentlicher Schlüssel:

$$-(a_i,b_i)$$
 mit

$$b_i = \langle a_i, s \rangle + e_i$$

Verschlüsselung

zufällige Teilmenge S aus [m]

$$-0: (\sum_{i \in S} a_i, \sum_{i \in S} b_i)$$

$$-1: \left(\sum_{i \in S} a_i, \left\lfloor \frac{p}{2} \right\rfloor + \sum_{i \in S} b_i\right)$$

Regev (2005) – Entschlüsselung

- Verschlüsselung
 - zufällige Teilmenge S aus [m]

$$-0: (\sum_{i \in S} a_i, \sum_{i \in S} b_i)$$

$$-1: \left(\sum_{i \in S} a_i, \left\lfloor \frac{p}{2} \right\rfloor + \sum_{i \in S} b_i\right)$$

- Entschlüsselung von (a,b):
 - 0: b $\langle a,s \rangle$ ist näher an 0 als an $\lfloor p/2 \rfloor$
 - − 1: sonst

Regev (2005) – Entschlüsselung II

• Entschlüsselung:

- − 0: b <a,s> ist n\u00e4her an0 als an \[p/2 \]
- 1: sonst

$$b_i = (e_i + \langle a_i, s \rangle)$$

$$\sum_{i \in S} e_i \le \left| \frac{p}{2} \right| / 2 \text{ wegen } \chi$$

$$b - \langle a, s \rangle = \sum_{i \in S} b_i - \sum_{i \in S} \langle a_i, s \rangle = \sum_{i \in S} (e_i + \langle a_i, s \rangle) - \sum_{i \in S} \langle a_i, s \rangle = \sum_{i \in S} e_i$$

$$\sum_{i \in S} e_i$$

Regev (2005) - Zusammenfassung

- Sicherheit beruht auf Worst-Case Quantum-Härte von SVP und SIVP (O(n^{1,5})-Approx.)
 - Reduktion benutzt QC, Kryptosystem nicht
 - Reduktion auch klassisch?
- effizienter
 - Öffentlicher Schlüssel: O(n⁴) → O(n²)
 - Nachrichten: $O(n^2) \rightarrow O(n)$

Zusammenfassung

- Kryptosysteme noch zu ineffizient
- bis jetzt keine Quantenalgorithmen, die klassische bei Gitterproblemen übertreffen
- Quantencomputer unter bestimmten Annahmen bis n^{2,5}-uSVP
- Evtl. zukunftsträchtig (Worst-Case!)
 - Effizienz ↔ stärkere Angriffe