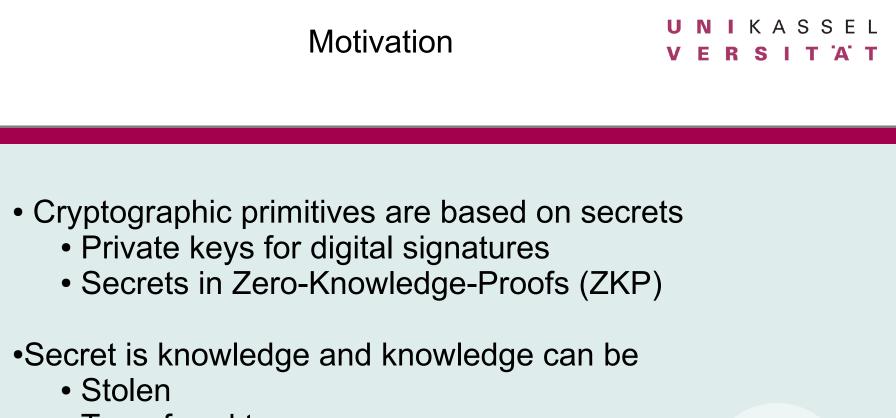
Kryptowochenende 2008


U N I K A S S E L V E R S I T 'A' T

Sebastian Pape

Templateless Biometric-Enforced Non-Transferability of Anonymous Credentials

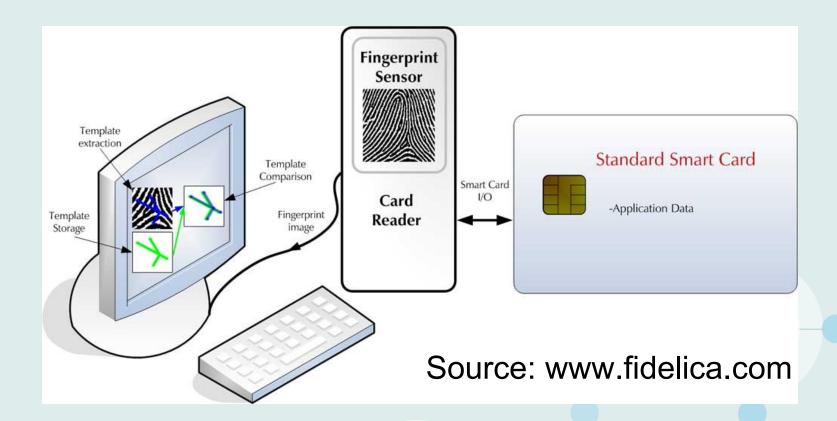
Overview

- Motivation
- Anonymous Credentials
- Problems with Biometrics
- Wallet-with-Observer Architecture
- Existing Approaches
- Idea
- Example
- Outlook

- Transfered to someone
- How can you be sure the secret was used by its regular owner?

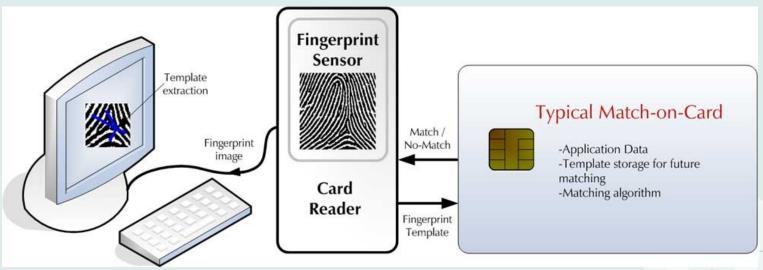
Anonymous Credentials

- Consist of cryptographic tokens
- Allow authentication without identification
 - Based on ZKP
- Non-transferablity may be wished
 - ⇒ Make the user not wanting to share
 - \Rightarrow Embed valuable secrets into the system
 - ⇒ Share nothing-or-all strategy
 x Can be circumvented
 x Raise system's value
 - ⇒ Keep tokens secret from user
 - Use of Biometrics


Problems with Biometrics

U N I K A S S E L V E R S I T 'A' T

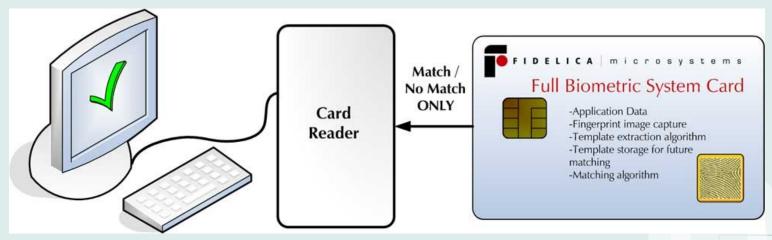
- Finding good/usable attributes
- Fingerprints
 - Universality
 - Circumvention
- Cannot be changed
- False nonmatch rate vs. False match rate
- Privacy Issues


Hardware (outdated)

U N I K A S S E L V E R S I T 'A' T

• Privacy problem: Template database

Hardware (match-on-card)



Source: www.fidelica.com

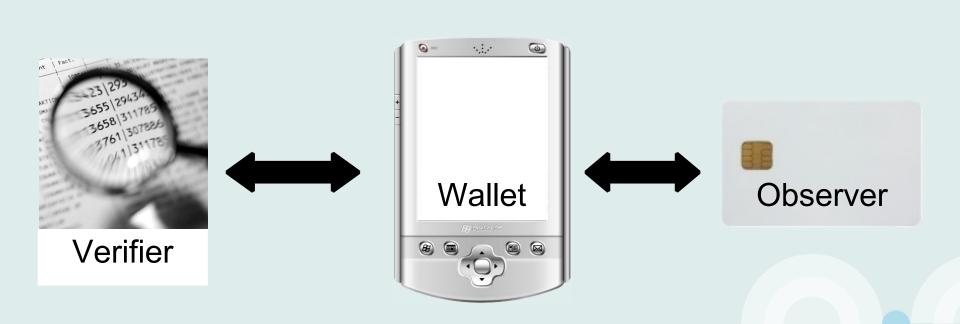
- No template database
- Privacy problem: Eavesdropper

Hardware (embedded)

U N I K A S S E L V E R S I T 'A' T

Source: www.fidelica.com

- No template database
- Protected against eavesdropper


- Finding good/usable attributes
- Fingerprints
 - Universality
 - Circumvention
- Cannot be changed
- False nonmatch rate

vs. False match rate

- Privacy Issues
- Trust to system

Wallet-with-Observer Architecture

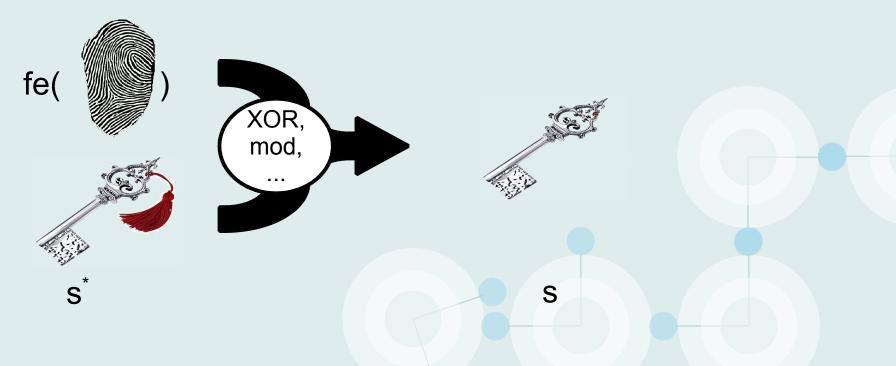
U N I K A S S E L V E R S I T 'A' T

General Problem: Contact to "correct card"?

Wallet-with-Observer Architecture + Biometrics

KASSEL E R S Α Τ

Biometrics to Observer


- Current approaches compare biometrics to templates
 Underlying system needs no change
 x Stored Templates
- Fuzzy extractors provide same output to "close" input
 - "error correcting hash"
 - Private keys can be derived from Biometrics

x Derived keys need to suit to underlying system
 v No templates/storage needed

Idea

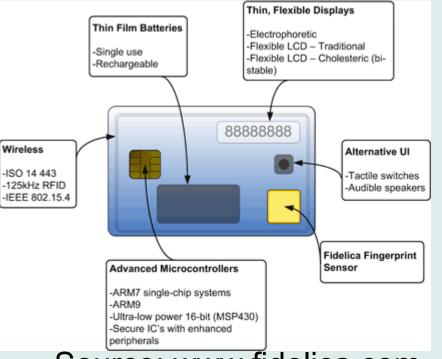
- Combine Advantages
 - ⇒ No Templates stored
 - ⇒ No change of underlying system

Example (Setup) based on Feige-Fiat-Shamir Id.-Protocol U N I K A S S E L V E R S I T 'A' T

Authority chooses two large prime integers p,q calculates n= p * q generates $s_1, ..., s_k$ with gcd(s_i, n) = 1 computes $v_i \equiv s_i^2 \pmod{n}$

Public (known by verifier and prover): n, v_i Secret (kept inside the smartcard): s_i Secret (kept by authority): p, q

```
Card initialization:


s is overwritten by \mathbf{s}_{i}^{*} \equiv \mathbf{s}_{i} - \mathbf{fe}(\mathbf{fp}_{u}) \pmod{n}
```

Example (Prove) based on Feige-Fiat-Shamir Id.-Protocol U N I K A S S E L V E R S I T 'A' T

Smartcard: chooses a random integer r, a random sign $\sigma \in \{-1,1\}$ computes $\sigma \mathbf{x} \equiv \mathbf{r}^2 \pmod{n} \nearrow \mathbf{V}$ Verifier: chooses numbers $a_i \in \{0,1\}$ **7** S S Smartcard: reads fingerprint fp computes $y \equiv r(s_1^* + fe(fp_1))^{a_1} * ... * (s_k^* + fe(fp_1))^{a_k} \pmod{n} \nearrow \vee$ Verifier: checks if $y^2 \equiv \pm x v_1^{a_1 *} \dots * v_k^{a_k} \pmod{n}$ decides if the prover has passed authorisation.

Outlook

U N I K A S S E L V E R S I T 'A' T

Source: www.fidelica.com

Connection to proper smartcard? User interleaved Use of flexible display e.g. for r²

Unlimited number of uses base on n-time anonym. authentification

Concrete implementation